SPOJ CIRU The area of the union of circles (计算几何)
题意:求 m 个圆的并的面积。
析:就是一个板子题,还有要注意圆的半径为0的情况。
代码如下:
- #pragma comment(linker, "/STACK:1024000000,1024000000")
- #include <cstdio>
- #include <string>
- #include <cstdlib>
- #include <cmath>
- #include <iostream>
- #include <cstring>
- #include <set>
- #include <queue>
- #include <algorithm>
- #include <vector>
- #include <map>
- #include <cctype>
- #include <cmath>
- #include <stack>
- #include <sstream>
- #define debug() puts("++++");
- #define gcd(a, b) __gcd(a, b)
- #define lson l,m,rt<<1
- #define rson m+1,r,rt<<1|1
- #define freopenr freopen("in.txt", "r", stdin)
- #define freopenw freopen("out.txt", "w", stdout)
- using namespace std;
- typedef long long LL;
- typedef unsigned long long ULL;
- typedef pair<double, int> P;
- const int INF = 0x3f3f3f3f;
- const double inf = 0x3f3f3f3f3f3f;
- const double PI = acos(-1.0);
- const double eps = 1e-8;
- const int maxn = 1e4 + 10;
- const int mod = 1e6;
- const int dr[] = {-1, 0, 1, 0};
- const int dc[] = {0, 1, 0, -1};
- const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
- int n, m;
- const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
- const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
- inline bool is_in(int r, int c){
- return r >= 0 && r < n && c >= 0 && c < m;
- }
- int dcmp(double x){
- if(fabs(x) < eps) return 0;
- if(x > 0) return 1;
- return -1;
- }
- double sqr(double x){ return x * x; }
- struct Point{
- double x, y;
- Point(){ }
- Point(double a, double b) : x(a), y(b) { }
- void input(){
- scanf("%lf %lf", &x, &y);
- }
- friend Point operator + (const Point &a, const Point &b){
- return Point(a.x + b.x, a.y + b.y);
- }
- friend Point operator - (const Point &a, const Point &b){
- return Point(a.x - b.x, a.y - b.y);
- }
- friend bool operator == (const Point &a, const Point &b){
- return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0;
- }
- friend Point operator * (const Point &a, const double &b){
- return Point(a.x * b, a.y * b);
- }
- friend Point operator * (const double &b, const Point &a){
- return Point(a.x * b, a.y * b);
- }
- friend Point operator / (const Point &a, const double &b){
- return Point(a.x / b, a.y / b);
- }
- double norm(){
- return sqrt(sqr(x) + sqr(y));
- }
- };
- double cross(const Point &a, const Point &b){
- return a.x * b.y - a.y * b.x;
- }
- struct Circle{
- Point p;
- double r;
- bool operator < (const Circle &o) const{
- if(dcmp(r-o.r) != 0) return dcmp(r-o.r) == -1;
- if(dcmp(p.x-o.p.x) != 0) return dcmp(p.x - o.p.x) == -1;
- return dcmp(p.y - o.p.y) == -1;
- }
- bool operator == (const Circle &o) const{
- return dcmp(r - o.r) == 0 && dcmp(p.x - o.p.x) == 0 && dcmp(p.y - o.p.y) == 0;
- }
- };
- Point rotate(const Point &p, double cost, double sint){
- double x = p.x, y = p.y;
- return Point(x*cost - y*sint, x*sint + y*cost);
- }
- pair<Point, Point> crossPoint(Point ap, double ar, Point bp, double br){
- double d = (ap - bp).norm();
- double cost = (ar*ar + d*d - br*br) / (2.0*ar*d);
- double sint = sqrt(1.0 - cost*cost);
- Point v = (bp - ap) / (bp - ap).norm() * ar;
- return make_pair(ap+rotate(v, cost, -sint), ap+rotate(v, cost, sint));
- }
- pair<Point, Point> crossPoint(const Circle &a, const Circle &b){
- return crossPoint(a.p, a.r, b.p, b.r);
- }
- Circle c[maxn], tc[maxn];
- #include<complex>
- struct Node{
- Point p;
- double a;
- int d;
- Node(const Point &pp, double aa, int dd) : p(pp), a(aa), d(dd) { }
- bool operator < (const Node &o) const{
- return a < o.a;
- }
- };
- double arg(Point p){
- return arg(complex<double> (p.x, p.y));
- }
- double solve(){
- sort(tc, tc + m);
- m = unique(tc, tc + m) - tc;
- n = 0;
- for(int i = m-1; i >= 0; --i){
- bool ok = true;
- for(int j = i+1; j < m; ++j){
- double d = (tc[i].p - tc[j].p).norm();
- if(dcmp(d - abs(tc[i].r - tc[j].r)) <= 0){
- ok = false; break;
- }
- }
- if(ok) c[n++] = tc[i];
- }
- double ans = 0.0;
- for(int i = 0; i < n; ++i){
- vector<Node> event;
- Point boundary = c[i].p + Point(-c[i].r, 0);
- event.push_back(Node(boundary, -PI, 0));
- event.push_back(Node(boundary, PI, 0));
- for(int j = 0; j < n; ++j){
- if(i == j) continue;
- double d = (c[i].p - c[j].p).norm();
- if(dcmp(d - (c[i].r + c[j].r)) < 0){
- pair<Point, Point> ret = crossPoint(c[i], c[j]);
- double x = arg(ret.first - c[i].p);
- double y = arg(ret.second - c[i].p);
- if(dcmp(x - y) > 0){
- event.push_back(Node(ret.first, x, 1));
- event.push_back(Node(boundary, PI, -1));
- event.push_back(Node(boundary, -PI, 1));
- event.push_back(Node(ret.second, y, -1));
- }
- else{
- event.push_back(Node(ret.first, x, 1));
- event.push_back(Node(ret.second, y, -1));
- }
- }
- }
- sort(event.begin(), event.end());
- int sum = event[0].d;
- for(int j = 1; j < event.size(); ++j){
- if(sum == 0){
- ans += cross(event[j-1].p, event[j].p) / 2.0;
- double x = event[j-1].a;
- double y = event[j].a;
- double area = c[i].r * c[i].r * (y-x) / 2.0;
- Point v1 = event[j-1].p - c[i].p;
- Point v2 = event[j].p - c[i].p;
- area -= cross(v1, v2) / 2.0;
- ans += area;
- }
- sum += event[j].d;
- }
- }
- return ans;
- }
- int main(){
- while(scanf("%d", &n) == 1){
- m = 0;
- for(int i = 0; i < n; ++i){
- tc[m].p.input();
- scanf("%lf", &tc[m].r);
- if(dcmp(tc[m].r) <= 0) continue;
- ++m;
- }
- printf("%.3f\n", solve());
- }
- return 0;
- }
SPOJ CIRU The area of the union of circles (计算几何)的更多相关文章
- SPOJ CIRU - The area of the union of circles (圆的面积并)
CIRU - The area of the union of circles no tags You are given N circles and expected to calculate t ...
- SPOJ CIRU The area of the union of circles
You are given N circles and expected to calculate the area of the union of the circles ! Input The f ...
- SPOJ CIRU The area of the union of circles ——Simpson积分
[题目分析] 圆的面积并. 直接Simpson积分,(但是有计算几何的解法,留着flag). simpson积分,如果圆出现了不连续的情况,是很容易出事情的.(脑补一下) 但是没有什么办法,本来就是一 ...
- 【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]
[题解]CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178] 传送门: \(\text{CIRU - The area ...
- SPOJ 8073 The area of the union of circles(计算几何の圆并)(CIRU)
Description You are given N circles and expected to calculate the area of the union of the circles ! ...
- SPOJ 8073 The area of the union of circles (圆并入门)
Sphere Online Judge (SPOJ) - Problem CIRU [求圆并的若干种算法,圆并扩展算法]_AekdyCoin的空间_百度空间 参考AekdyCoin的圆并算法解释,根据 ...
- [SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并
[SPOJ-CIRU]The area of the union of circles/[BZOJ2178]圆的面积并 题目大意: 求\(n(n\le1000)\)个圆的面积并. 思路: 对于一个\( ...
- SPOJ CIRU SPOJ VCIRCLE 圆的面积并问题
SPOJ VCIRCLE SPOJ CIRU 两道题都是给出若干圆 就面积并,数据规模和精度要求不同. 求圆面积并有两种常见的方法,一种是Simpson积分,另一种是几何法. 在这里给出几何方法. P ...
- SPOJ CIRU
SPOJ CIRU 题意 给出n个圆,求他们覆盖的面积. 解法 自适应Simpson,但需要将圆离散化一下,以保证我们查询的是一个连续的有圆的区间. 奇怪的是我没有离散化,样例都没有过,却把题给A了 ...
随机推荐
- JS 常用字符串操作
Js字符串操作函数大全 /******************************************* 字符串函数扩充 ...
- Carriage-Return Line-Feed
Git 提交时报错warning: LF will be replaced by CRLF in - CSDN博客 https://blog.csdn.net/yan_less/article/det ...
- mongodb学习之:安全和认证
mongodb默认是不认证的,默认没有账号,只要能连接上服务就可以对数据库进行各种操作,mongodb认为安全最好的方法就是在一个可信的环境中运行它,保证之后可信的机器才能访问它.因此需要在登录的时候 ...
- Machine Learning in Action(6) AdaBoost算法
Adaboost也是一种原理简单,但很实用的有监督机器学习算法,它是daptive boosting的简称.说到boosting算法,就不得提一提bagging算法,他们两个都是把一些弱分类器组合起来 ...
- codeforces Codeforces Round #273 (Div. 2) 478B
B. Random Teams time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- UVA10129 Play on Words —— 欧拉回路
题目链接:https://vjudge.net/problem/UVA-10129 代码如下: // UVa10129 Play on Words // Rujia Liu // 题意:输入n个单词, ...
- zabbix 中 宏 的介绍
宏的作用是便于在模板.items.trigger中的引用.宏的名称为 {$名称},宏的字符范围为 A~Z.0~9._ . 例如: 在key中的宏: net.tcp.service[ssh,{$SSH_ ...
- rc.local 开启自启动,检测是否成功
rc.local /etc/init.d/nginx start 查看运行状态 systemctl status rc-local ● rc-local.service - /etc/rc.local ...
- c#设置系统时间后不起作用
网上设置系统时间的代码很多,但是会出现设置后没有作用的问题 遇到以上问题可以按照如下办法解决 1.项目--属性--安全性--勾选启用ClickOne安全设置,如下图所示: 2.打开app.manife ...
- hdu 2671 shǎ崽 OrOrOrOrz(排序)
题意:排序后按题目要求输出 思路:排序 #include<iostream> #include<stdio.h> #include<algorithm> using ...