题目描述

金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NN元钱就行”。今天一早,金明就开始做预算了,他把想买的物品分为两类:主件与附件,附件是从属于某个主件的,下表就是一些主件与附件的例子:

主件 附件

电脑 打印机,扫描仪

书柜 图书

书桌 台灯,文具

工作椅 无

如果要买归类为附件的物品,必须先买该附件所属的主件。每个主件可以有00个、11个或22个附件。附件不再有从属于自己的附件。金明想买的东西很多,肯定会超过妈妈限定的NN元。于是,他把每件物品规定了一个重要度,分为55等:用整数1-51−5表示,第55等最重要。他还从因特网上查到了每件物品的价格(都是1010元的整数倍)。他希望在不超过NN元(可以等于NN元)的前提下,使每件物品的价格与重要度的乘积的总和最大。

设第jj件物品的价格为v_[j]v[​j],重要度为w_[j]w[​j],共选中了kk件物品,编号依次为j_1,j_2,…,j_kj1​,j2​,…,jk​,则所求的总和为:

v_[j_1] \times w_[j_1]+v_[j_2] \times w_[j_2]+ …+v_[j_k] \times w_[j_k]v[​j1​]×w[​j1​]+v[​j2​]×w[​j2​]+…+v[​jk​]×w[​jk​]。

请你帮助金明设计一个满足要求的购物单。

输入输出格式

输入格式:

第11行,为两个正整数,用一个空格隔开:

N mNm (其中N(<32000)N(<32000)表示总钱数,m(<60)m(<60)为希望购买物品的个数。) 从第22行到第m+1m+1行,第jj行给出了编号为j-1j−1的物品的基本数据,每行有33个非负整数

v p qvpq (其中vv表示该物品的价格(v<10000v<10000),p表示该物品的重要度(1-51−5),qq表示该物品是主件还是附件。如果q=0q=0,表示该物品为主件,如果q>0q>0,表示该物品为附件,qq是所属主件的编号)

输出格式:

一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(<200000)。


/* 用一个鬼畜的方法写了出来,开森开森(/≧▽≦)/ */

首先将每一个主件用0/1背包处理,用f[j - v[i]] + p[i]来更新f[i],如果能够更新,就枚举这个主件的每一个附件f[j] + p[k]去更新f[j + v[k]](k为附件);如果只是这样的话,有一种主件会亏,但附件血赚的情况就没有考虑;所以先将这个主件不更新的值记录下来,假设这个主件被买,用附件去更新后面,最后再用这个记录的值去更新到底买不买主件;这段代码鬼畜的地方在于假设这个点被更新,被更新后还要更新已经被更新过的点,并且最后还要判断这个点需不需要更新;

#include <bits/stdc++.h>

using namespace std;

#define ll long long
#define INF 0x3f3f3f3f
#define MAXN 10100000
#define MAXM 3010
#define _ 0 template < typename T > inline void read(T &x) {
x = ;
T ff = , ch = getchar();
while(!isdigit(ch)) {
if(ch == '-') ff = -;
ch = getchar();
}
while(isdigit(ch)) {
x = (x << ) + (x << ) + (ch ^ );
ch = getchar();
}
x *= ff;
} int n,m,ans,f[MAXN],v[MAXN],p[MAXN],q[MAXN];
vector < int > a[]; int main() {
read(n); read(m);
for(int i = ; i <= m; ++i) {
read(v[i]);
read(p[i]);
read(q[i]);
p[i] *= v[i];
if(q[i] > ) a[q[i]].push_back(i);
} for(int i = ; i <= m; ++i) {
if(!q[i]) {
for(int j = n; j >= v[i]; --j) {
// if(f[j - v[i]] + p[i] > f[j]) {
int maxx = f[j];
f[j] = f[j - v[i]] + p[i];
// }
for(int k = ; k < a[i].size(); ++k) {
if(j + v[a[i][k]] <= n && f[j + v[a[i][k]]] < f[j] + p[a[i][k]])
f[j + v[a[i][k]]] = f[j] + p[a[i][k]];
}
if(a[i].size() == ) {
if(j + v[a[i][]] + v[a[i][]] <= n && f[j + v[a[i][]] + v[a[i][]]] < f[j] + p[a[i][]] + p[a[i][]])
f[j + v[a[i][]] + v[a[i][]]] = f[j] + p[a[i][]] + p[a[i][]];
}
/*if(f[j - v[i]] + p[i] > f[j]) {
f[j] = f[j - v[i]] + p[i];
} */
f[j] = max(f[j],maxx);
}
}
}
for(int i = ; i <= n; ++i)
ans = max(ans,f[i]);
printf("%d\n",ans);
return (^_^);
}

NOIP 2006 T2 金明的预算方案的更多相关文章

  1. NOIP 2006 金明的预算方案

    洛谷 P1064 金明的预算方案 https://www.luogu.org/problem/P1064 JDOJ 1420: [NOIP2006]金明的预算方案 T2 https://neooj.c ...

  2. NOIP 2006 金明的预算方案(洛谷P1064,动态规划递推,01背包变形,滚动数组)

    一.题目链接:P1064 金明的预算方案 二.思路 1.一共只有五种情况 @1.不买 @2.只买主件 @3.买主件和附件1(如果不存在附件也要运算,只是这时附件的数据是0,也就是算了对标准的结果也没影 ...

  3. 「NOIP2006」「LuoguP1064」 金明的预算方案(分组背包

    题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过NNN元钱就行” ...

  4. [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案

    [codevs1155][KOJ0558][COJ0178][NOIP2006]金明的预算方案 试题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴 ...

  5. NOIP2006 金明的预算方案

    1.             金明的预算方案 (budget.pas/c/cpp) [问题描述] 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈 ...

  6. 动态规划(背包问题):HRBUST 1377 金明的预算方案

    金明的预算方案 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行 ...

  7. Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划)

    Luogu 1064 金明的预算方案 / CJOJ 1352 [NOIP2006] 金明的预算方案(动态规划) Description 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己 ...

  8. [LuoguP1064][Noip2006]金明的预算方案

    金明的预算方案(Link) 题目描述 现在有\(M\)个物品,每一个物品有一个钱数和重要度,并且有一个\(Q\),如果\(Q = 0\),那么该物件可以单独购买,当\(Q != 0\)时,表示若要购买 ...

  9. 算法笔记_103:蓝桥杯练习 算法提高 金明的预算方案(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间金明自己专用的很宽敞的房间.更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些 ...

随机推荐

  1. java设计模式之综述

    一.什么是设计模式 设计模式是一套被反复使用的.多数人知晓的.经过分类编目的.代码设计经验的总结.使用设计模式是为了重用代码.让代码更容易被他人理解.保证代码可靠性. 毫无疑问,设计模式于己于他人于系 ...

  2. ChannelHandler揭秘(Netty源码死磕5)

    精进篇:netty源码死磕5  揭开 ChannelHandler 的神秘面纱 目录 1. 前言 2. Handler在经典Reactor中的角色 3. Handler在Netty中的坐标位置 4. ...

  3. 指定查询条件,查询对应的集合List(单表)

    TestDao.java(测试类) @Test public void findCollectionByConditionNoPage(){  ApplicationContext ac = new ...

  4. MongoDB 数据库、集合创建删除与文档插入

    本文章主要介绍mongodb的基本命令,前提条件,你的本地已经安装了mongo. 一.基本命令使用(主要是创建,增删改.) 0.mongoDb统计信息 获得关于MongoDB的服务器统计,需要在Mon ...

  5. 在react里面使用jquery插件

    在react里面使用jquery插件 背景: 虽然现在react,vue等框架开启了前端开发的新篇章, 但对于一些比较复杂的页面,比如想在项目里面生成 组织架构图,人员汇报关系等还是需要用到之前的 j ...

  6. Python序列——元组

    元组是什么 1 创建元组 2 访问元组中的值 3 更新元组中的元素 4 删除元组中的元素或者元组本身 元组相关操作 内建函数对元组的支持 1 序列类型函数 2 元组内建函数 元组的特殊性 1. 元组是 ...

  7. codeforces 570D.Tree Requests

    [题目大意]: 给定一棵树,树的每个节点对应一个小写字母字符,有m个询问,每次询问以vi为根节点的子树中,深度为hi的所有节点对应的字符能否组成一个回文串: [题目分析]: 先画个图,可看出每次询问的 ...

  8. 盒子的display属性

    <body> <div style="display:inline">Box-1</div> <div style="displ ...

  9. CSS动画硬件加速

    http://zencode.in/14.CSS%E5%8A%A8%E7%94%BB%E7%9A%84%E6%80%A7%E8%83%BD%E4%BC%98%E5%8C%96.html http:// ...

  10. package-info.java到底是什么

    发现距离上一次在这里写博客已经三个多月了...说好的笔耕不辍呢=.= Anyway,今天(确切说是昨天晚上)在code review中被组里的QA II问到在一个叫做package-info.java ...