考前写写板子。

用$(i,pre[i],nxt[i])$来描述一个点,然后就变成了区间求最值的问题。

KD-Tree 由低维转向高维的方法,可以用来敲暴力。

剩下就是KD-Tree的基本操作了。

#include <map>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define inf 0x3f3f3f3f
#define L t[o].ch[0]
#define R t[o].ch[1]
#define ll long long
#define mp make_pair
#define maxn 200005 int D,a[maxn],n,m,ans,pre[maxn],nxt[maxn],lst[maxn],rt;
int ql,qr;
struct Point{
int d[3],mn[3],mx[3],ch[2],v,vmax;
}t[maxn];//i pre nxt bool operator < (Point a,Point b){return a.d[D]<b.d[D];} void pushup(int o)
{
F(i,0,2) t[o].mx[i]=t[o].mn[i]=t[o].d[i];
F(i,0,2)
{
t[o].mx[i]=max(max(t[L].mx[i],t[R].mx[i]),t[o].mx[i]);
t[o].mn[i]=min(min(t[L].mn[i],t[R].mn[i]),t[o].mn[i]);
}
t[o].vmax=max(t[o].v,max(t[L].vmax,t[R].vmax));
} void init(){F(i,0,2) t[0].mn[i]=inf,t[0].mx[i]=-inf;} int build(int l,int r,int dir)
{
D=dir;int mid=l+r>>1;int o=mid;
nth_element(t+l,t+mid,t+r+1);
L=l<mid?build(l,mid-1,(dir+1)%3):0;
R=r>mid?build(mid+1,r,(dir+1)%3):0;
pushup(o); return o;
} bool in(int o)
{
if (t[o].mx[1]>=ql||t[o].mn[2]<=qr) return 0;
if (t[o].mx[0]>qr||t[o].mx[1]<ql) return 0;
return 1;
} bool pin(int o)
{
if (t[o].d[0]>=ql&&t[o].d[0]<=qr&&t[o].d[1]<ql&&t[o].d[2]>qr) return 1;
return 0;
} bool check(int o)
{
if (t[o].mx[0]<ql||t[o].mn[0]>qr) return 0;
if (t[o].mn[1]>=ql||t[o].mx[2]<=qr) return 0;
return 1;
} void query(int o)
{
if (!o) return;
if (in(o)) {ans=max(ans,t[o].vmax);return;}
if (pin(o)) ans=max(ans,t[o].v);
if (t[L].vmax>t[R].vmax)
{
if (t[L].vmax>ans&&check(L)) query(L);
if (t[R].vmax>ans&&check(R)) query(R);
}
else
{
if (t[R].vmax>ans&&check(R)) query(R);
if (t[L].vmax>ans&&check(L)) query(L);
}
} int main()
{
scanf("%d%d",&n,&m);init();
F(i,1,n) scanf("%d",&a[i]);
F(i,1,n) lst[i]=0;
F(i,1,n) pre[i]=lst[a[i]],lst[a[i]]=i;
F(i,1,n) lst[i]=n+1;
D(i,n,1) nxt[i]=lst[a[i]],lst[a[i]]=i;
F(i,1,n) t[i].d[0]=i,t[i].d[1]=pre[i],t[i].d[2]=nxt[i],t[i].v=a[i];
rt=build(1,n,0);
F(i,1,m)
{
int x,y;
scanf("%d%d",&x,&y);
ql=min((x+ans)%n+1,(y+ans)%n+1);
qr=max((x+ans)%n+1,(y+ans)%n+1);
ans=0;query(rt);printf("%d\n",ans);
}
return 0;
}

  

BZOJ 3489 A simple rmq problem ——KD-Tree的更多相关文章

  1. BZOJ 3489: A simple rmq problem(K-D Tree)

    Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 2579  Solved: 888[Submit][Status][Discuss] Descripti ...

  2. bzoj 3489: A simple rmq problem k-d树思想大暴力

    3489: A simple rmq problem Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 551  Solved: 170[Submit][ ...

  3. BZOJ 3489: A simple rmq problem

    3489: A simple rmq problem Time Limit: 40 Sec  Memory Limit: 600 MBSubmit: 1594  Solved: 520[Submit] ...

  4. [BZOJ 3489] A simple rmq problem 【可持久化树套树】

    题目链接:BZOJ - 3489 题目分析 “因为是OJ上的题,就简单点好了.”——出题人 真的..好..简单... 首先,我们求出每个数的前一个与它相同的数的位置,即 prev[i] ,如果前面没有 ...

  5. BZOJ3489 A simple rmq problem K-D Tree

    传送门 什么可持久化树套树才不会写呢,K-D Tree大法吼啊 对于第\(i\)个数,设其前面最后的与它值相同的位置为\(pre_i\),其后面最前的与它值相同的位置为\(aft_i\),那么对于一个 ...

  6. BZOJ.3489.A simple rmq problem(主席树 Heap)

    题目链接 当时没用markdown写,可能看起来比较难受...可以复制到别的地方看比如DevC++. \(Description\) 给定一个长为n的序列,多次询问[l,r]中最大的只出现一次的数.强 ...

  7. bzoj 3489 A simple rmq problem - 线段树

    Description 因为是OJ上的题,就简单点好了.给出一个长度为n的序列,给出M个询问:在[l,r]之间找到一个在这个区间里只出现过一次的数,并且要求找的这个数尽可能大.如果找不到这样的数,则直 ...

  8. BZOJ 3489 A simple rmq problem(可持久化线段树)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3489 题意:一个数列.每次询问一个区间内出现一次的最大的数字是多少. 思路:设la ...

  9. BZOJ 3489 A simple rmq problem 可持久化KDtree/二维线段树

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=3489 题意概述: 给出一个序列,每次询问一个序列区间中仅出现了一次的数字最大是多少,如果 ...

  10. bzoj 3489 A simple rmq problem——主席树套线段树

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3489 题解:http://www.itdaan.com/blog/2017/11/24/9b ...

随机推荐

  1. HDU 5097 Page Rank (模拟)

    题目背景是以前用来对网页进行排名的Page Rank算法,是早期Google的革命性发明. 背后的原理是矩阵和图论.这个数学模型是由Google的创始人拉里·佩奇和谢尔盖·布林发现的. 如果一个网页被 ...

  2. KMP算法入门讲解

    字符串匹配问题.假设文本是一个长度为$n$的字符串$T$,模板是一个长度为$m$的字符串$P$,且$m\leq n$.需要求出模板在文本中的所有匹配点$i$,即满足$T[i]=P[0],T[I+1]= ...

  3. [Java] 新手快速就业需要掌握的知识点

    目的:主要是分享下日常工作中使用到的技术点,根据二八定律快速掌握使用知识点,先就业再沉淀去积累经验.(个人建议仅供参考) 背景:目前一般来说,都是前后端分离.你只需要提供接口给前端,他来处理就可以了, ...

  4. python之生成器的初识

    1. 生成器的定义 生成器的本质就是迭代器.python社区生成器和迭代器是一种 2. 生成器和迭代器区别 迭代器: ​ 都是Python给你提供的已经写好的工具或者通过数据转化得来的 生成器: ​ ...

  5. linux虚拟机配置网络

    第一步.网络模式设置为桥接模式   第二步.设置ip和掩码 vim /etc/sysconfig/network-scripts/ifcfg-ens33 ens33为当前机器的网卡名称  在文件尾部添 ...

  6. ubuntu18.04+win10解决时钟不同步办法

    安装ntpdate: 执行命令: sudo apt-get install ntpdate 设置校正服务器: sudo ntpdate time.windows.com 设置硬件时间为本地时间: 执行 ...

  7. LeetCode(23)Merge k Sorted Lists

    题目 Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity ...

  8. CF 510b Fox And Two Dots

    Fox Ciel is playing a mobile puzzle game called "Two Dots". The basic levels are played on ...

  9. POJ:3020-Antenna Placement(二分图的最小路径覆盖)

    原题传送:http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Descri ...

  10. Linux学习-X Server 配置文件解析与设定

    X server 的配置 文件都是预设放置在 /etc/X11 目录下,而相关的显示模块或上面提到的总总模块,则主要放置在/usr/lib64/xorg/modules . 比较重要的是字型文件与芯片 ...