loj2000 「SDOI2017」数字表格
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
int T, n, m, pri[1000005], pricnt, mu[1000005], f[1000005], g[1000005], F[1000005];
bool isp[1000005];
const int mod=1000000007;
template <typename _T> int ksm(int a, _T b){
int re=1;
while(b){
if(b&1) re = (ll)re * a % mod;
a = (ll)a * a % mod;
b >>= 1;
}
return re;
}
void shai(){
memset(isp, true, sizeof(isp));
isp[0] = isp[1] = false;
mu[1] = 1;
for(int i=2; i<=1000000; i++){
if(isp[i]) pri[++pricnt] = i, mu[i] = -1;
for(int j=1; j<=pricnt && (ll)i*pri[j]<=1000000; j++){
isp[i*pri[j]] = false;
if(i%pri[j]==0){
mu[pri[j]*i] = 0;
break;
}
else mu[pri[j]*i] = -mu[i];
}
}
f[0] = 0;
f[1] = g[1] = F[1] = F[0] = 1;
for(int i=2; i<=1000000; i++){
f[i] = (f[i-1] + f[i-2]) % mod;
g[i] = ksm(f[i], mod-2);
F[i] = 1;
}
for(int i=1; i<=1000000; i++)
if(mu[i]!=0)
for(int j=i; j<=1000000; j+=i)
F[j] = (ll)F[j] * (mu[i]>0?f[j/i]:g[j/i]) % mod;
for(int i=1; i<=1000000; i++)
F[i] = (ll)F[i-1] * F[i] % mod;
}
int calc(int n, int m){
int re=1;
for(int i=1; i<=n; ){
int nxt=min(n/(n/i), m/(m/i));
int tmp1=(ll)F[nxt]*ksm(F[i-1], mod-2)%mod;
int faq=ksm(tmp1, (ll)(n/i)*(m/i));
re = (ll)re * faq % mod;
i = nxt + 1;
}
return re;
}
int main(){
cin>>T;
shai();
while(T--){
scanf("%d %d", &n, &m);
if(n>m) swap(n, m);
printf("%d\n", calc(n, m));
}
return 0;
}
loj2000 「SDOI2017」数字表格的更多相关文章
- 「SDOI2017」数字表格
题目链接 问题分析 \[ \begin{aligned} Ans&=\prod_{i=1}^n\prod_{j=1}^mf[\gcd(i,j)]\\ &=\prod_{t=1}^nf( ...
- 「SDOI2017」树点涂色 解题报告
「SDOI2017」树点涂色 我sb的不行了 其实一开始有一个类似动态dp的想法 每个点维护到lct树上到最浅点的颜色段数,然后维护一个\(mx_{0,1}\)也就是是否用虚儿子的最大颜色 用个set ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
- LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配
#2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- AC日记——「SDOI2017」序列计数 LibreOJ 2002
「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 201704 ...
- 「SDOI2016」数字配对
「SDOI2016」数字配对 题目大意 传送门 题解 \(a_i\) 是 \(a_j\) 的倍数,且 \(\frac{a_i}{a_j}\) 是一个质数,则将 \(a_i,a_j\) 质因数分解后,其 ...
- 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]
数字表格 Time Limit: 50 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...
- 【LOJ】#2128. 「HAOI2015」数字串拆分
题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...
- LOJ2269. 「SDOI2017」切树游戏 [FWT,动态DP]
LOJ 思路 显然是要DP的.设\(dp_{u,i}\)表示\(u\)子树内一个包含\(u\)的连通块异或出\(i\)的方案数,发现转移可以用FWT优化,写成生成函数就是这样的: \[ dp_{u}= ...
随机推荐
- R17下maps新增参数的问题
今天遇到一个奇怪的问题,我之前写的一个函数在我弟弟的机器上编译出错.代码如下: %%将list [k1,v1,k2,v2...]转换成map {k1=>v1,key2=>v2...} -s ...
- 单机版mongodb
1.下载安装包 wget http://fastdl.mongodb.org/linux/mongodb-linux-i686-1.8.2.tgz 下载完成后解压缩压缩包 tar zxf mongod ...
- canvas、svg、canvas与svg的区别
一.canvas canvas 画布,位图 <canvas> 标签定义图形,比如图表和其他图像,您必须使用脚本来绘制图形 注意:不要在style中给canvas设置宽高,会有位移差 can ...
- Java中类成员变量初始化顺序
一. 定义处默认初始化vs构造函数中初始化 java中类成员变量支持在声明处初始化,也可以在构造函数中初始化,那么这两者有什么区别呢?看下面例子 public class FieldsInit { p ...
- JavaScript中函数对象和对象的区别
function Test (word) { console.log (word); } Test('哈哈,我是函数'); new Test('哈哈,我是对象'); //将以上的调用方式换种通俗易懂的 ...
- Python3+Selenium3+webdriver学习笔记14(等待判断 鼠标事件 )
!/usr/bin/env python -*- coding:utf-8 -*-'''Selenium3+webdriver学习笔记14(等待判断 鼠标事件 )'''from selenium im ...
- Windows基础环境_安装配置教程(Windows7 64、JDK1.8、Android SDK23.0、TortoiseSVN 1.9.5)
Windows基础环境_安装配置教程(Windows7 64.JDK1.8.Android SDK23.0.TortoiseSVN 1.9.5) 安装包版本 1) JDK版本包 地址: htt ...
- document.all.item作用
1.document.all.myCheckBox和 document.all.item通过控件的名字定位控件,item()中是控件的名字例如:<input type="checkbo ...
- 【Python图像特征的音乐序列生成】深度卷积网络,以及网络核心
这个项目主要涉及到两个网络,其中卷积神经网络用来提取图片表达的情绪,提取出一个二维向量. 网络结构如图: 词向量采用预训练的glove模型,d=50,其他信息包括了图片的“空旷程度”.亮度.对比度等信 ...
- windows server 2008 R2 的 FTP 防火墙的正确配置方法
存在问题 FTP搭建完成后,仅本机可以访问,其他机器无法访问. 解决方案 这时,将C:\Windows\System32\svchost.exe添加到例外即可正常访问,如下图所示.将20及21端口添加 ...