there

#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
int T, n, m, pri[1000005], pricnt, mu[1000005], f[1000005], g[1000005], F[1000005];
bool isp[1000005];
const int mod=1000000007;
template <typename _T> int ksm(int a, _T b){
int re=1;
while(b){
if(b&1) re = (ll)re * a % mod;
a = (ll)a * a % mod;
b >>= 1;
}
return re;
}
void shai(){
memset(isp, true, sizeof(isp));
isp[0] = isp[1] = false;
mu[1] = 1;
for(int i=2; i<=1000000; i++){
if(isp[i]) pri[++pricnt] = i, mu[i] = -1;
for(int j=1; j<=pricnt && (ll)i*pri[j]<=1000000; j++){
isp[i*pri[j]] = false;
if(i%pri[j]==0){
mu[pri[j]*i] = 0;
break;
}
else mu[pri[j]*i] = -mu[i];
}
}
f[0] = 0;
f[1] = g[1] = F[1] = F[0] = 1;
for(int i=2; i<=1000000; i++){
f[i] = (f[i-1] + f[i-2]) % mod;
g[i] = ksm(f[i], mod-2);
F[i] = 1;
}
for(int i=1; i<=1000000; i++)
if(mu[i]!=0)
for(int j=i; j<=1000000; j+=i)
F[j] = (ll)F[j] * (mu[i]>0?f[j/i]:g[j/i]) % mod;
for(int i=1; i<=1000000; i++)
F[i] = (ll)F[i-1] * F[i] % mod;
}
int calc(int n, int m){
int re=1;
for(int i=1; i<=n; ){
int nxt=min(n/(n/i), m/(m/i));
int tmp1=(ll)F[nxt]*ksm(F[i-1], mod-2)%mod;
int faq=ksm(tmp1, (ll)(n/i)*(m/i));
re = (ll)re * faq % mod;
i = nxt + 1;
}
return re;
}
int main(){
cin>>T;
shai();
while(T--){
scanf("%d %d", &n, &m);
if(n>m) swap(n, m);
printf("%d\n", calc(n, m));
}
return 0;
}

loj2000 「SDOI2017」数字表格的更多相关文章

  1. 「SDOI2017」数字表格

    题目链接 问题分析 \[ \begin{aligned} Ans&=\prod_{i=1}^n\prod_{j=1}^mf[\gcd(i,j)]\\ &=\prod_{t=1}^nf( ...

  2. 「SDOI2017」树点涂色 解题报告

    「SDOI2017」树点涂色 我sb的不行了 其实一开始有一个类似动态dp的想法 每个点维护到lct树上到最浅点的颜色段数,然后维护一个\(mx_{0,1}\)也就是是否用虚儿子的最大颜色 用个set ...

  3. loj#2128. 「HAOI2015」数字串拆分 矩阵乘法

    目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...

  4. LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配

    #2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据   题目描述 ...

  5. AC日记——「SDOI2017」序列计数 LibreOJ 2002

    「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 201704 ...

  6. 「SDOI2016」数字配对

    「SDOI2016」数字配对 题目大意 传送门 题解 \(a_i\) 是 \(a_j\) 的倍数,且 \(\frac{a_i}{a_j}\) 是一个质数,则将 \(a_i,a_j\) 质因数分解后,其 ...

  7. 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]

    数字表格 Time Limit: 50 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...

  8. 【LOJ】#2128. 「HAOI2015」数字串拆分

    题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...

  9. LOJ2269. 「SDOI2017」切树游戏 [FWT,动态DP]

    LOJ 思路 显然是要DP的.设\(dp_{u,i}\)表示\(u\)子树内一个包含\(u\)的连通块异或出\(i\)的方案数,发现转移可以用FWT优化,写成生成函数就是这样的: \[ dp_{u}= ...

随机推荐

  1. Nginx服务器301跳转到带www的域名的方法

    为什么要这么做? 我们的域名在做解析时经常会解析2个域名,即带www的和不带www的.这样做的目的是,当用户使用不带www的域名时,也可以正常访问你的网站.但是这样做的后果是,你站点主域名的PR值分散 ...

  2. Jquery 如何获取表单中的全部元素的值

    1.使用var formData = $(formId).serialize()获取:获取数据的格式为url参数形式的字符串.例如:id=100&name=张三   2.服务器端使用parse ...

  3. Python3+Selenium3+webdriver学习笔记7(选择多链接的结果、iframe、下拉框)

    #!/usr/bin/env python# -*- coding:utf-8 -*- from selenium import webdriverfrom selenium.webdriver.co ...

  4. BLL-IDAL-DAL的关系

    BLL  实现 IDAL  是一个接口 DAL 实现方法 BLL 调用IDAL 的方法 IDAL中的方法   在 DAL中必须实现 使用的方法  调用BLL的方法就可以

  5. Unity runtime性能分析器

    一. Profiler: 1. CPU Usage A. WaitForTargetFPS: Vsync(垂直同步)功能所,即显示当前帧的CPU等待时间 B. Overhead: Profiler总体 ...

  6. tpcc-mysql的安装和使用

    tpcc-mysql介绍 TPC(Tracsaction Processing Performance Council) 事务处理性能协会是一个评价大型数据库系统软硬件性能的非盈利的组织,TPC-C是 ...

  7. JS函数的length属性

    length 是函数对象的一个属性值,指该函数有多少个必须要传入的参数,那些已定义了默认值的参数不算在内,比如function(xx = 0)的length是0.. 另外在函数内部:arguments ...

  8. 爬虫遇到HTTP Error 403的问题

    # coding=gbk from bs4 import BeautifulSoup import requests import urllib x = 1 y = 1 def crawl(url): ...

  9. 什么是redis的持久化?

    什么是redis的持久化? RDB 持久化:该机制可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot). AOF 持久化:记录服务器执行的所有写操作命令,并在服 ...

  10. ios sinaweibo 客户端(二)

    这一篇博文讲述发微博界面的实现. 首先我们先了解一下在这个发微博界面中需要做哪些事情吧! (1) 发微博包括文字内容和微博图片,所以我们可以用一个textview来装载微博文字内容,用一个imagev ...