loj2000 「SDOI2017」数字表格
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
typedef long long ll;
int T, n, m, pri[1000005], pricnt, mu[1000005], f[1000005], g[1000005], F[1000005];
bool isp[1000005];
const int mod=1000000007;
template <typename _T> int ksm(int a, _T b){
int re=1;
while(b){
if(b&1) re = (ll)re * a % mod;
a = (ll)a * a % mod;
b >>= 1;
}
return re;
}
void shai(){
memset(isp, true, sizeof(isp));
isp[0] = isp[1] = false;
mu[1] = 1;
for(int i=2; i<=1000000; i++){
if(isp[i]) pri[++pricnt] = i, mu[i] = -1;
for(int j=1; j<=pricnt && (ll)i*pri[j]<=1000000; j++){
isp[i*pri[j]] = false;
if(i%pri[j]==0){
mu[pri[j]*i] = 0;
break;
}
else mu[pri[j]*i] = -mu[i];
}
}
f[0] = 0;
f[1] = g[1] = F[1] = F[0] = 1;
for(int i=2; i<=1000000; i++){
f[i] = (f[i-1] + f[i-2]) % mod;
g[i] = ksm(f[i], mod-2);
F[i] = 1;
}
for(int i=1; i<=1000000; i++)
if(mu[i]!=0)
for(int j=i; j<=1000000; j+=i)
F[j] = (ll)F[j] * (mu[i]>0?f[j/i]:g[j/i]) % mod;
for(int i=1; i<=1000000; i++)
F[i] = (ll)F[i-1] * F[i] % mod;
}
int calc(int n, int m){
int re=1;
for(int i=1; i<=n; ){
int nxt=min(n/(n/i), m/(m/i));
int tmp1=(ll)F[nxt]*ksm(F[i-1], mod-2)%mod;
int faq=ksm(tmp1, (ll)(n/i)*(m/i));
re = (ll)re * faq % mod;
i = nxt + 1;
}
return re;
}
int main(){
cin>>T;
shai();
while(T--){
scanf("%d %d", &n, &m);
if(n>m) swap(n, m);
printf("%d\n", calc(n, m));
}
return 0;
}
loj2000 「SDOI2017」数字表格的更多相关文章
- 「SDOI2017」数字表格
题目链接 问题分析 \[ \begin{aligned} Ans&=\prod_{i=1}^n\prod_{j=1}^mf[\gcd(i,j)]\\ &=\prod_{t=1}^nf( ...
- 「SDOI2017」树点涂色 解题报告
「SDOI2017」树点涂色 我sb的不行了 其实一开始有一个类似动态dp的想法 每个点维护到lct树上到最浅点的颜色段数,然后维护一个\(mx_{0,1}\)也就是是否用虚儿子的最大颜色 用个set ...
- loj#2128. 「HAOI2015」数字串拆分 矩阵乘法
目录 题目链接 题解 代码 题目链接 loj#2128. 「HAOI2015」数字串拆分 题解 \(f(s)\)对于\(f(i) = \sum_{j = i - m}^{i - 1}f(j)\) 这个 ...
- LibreOJ 2003. 「SDOI2017」新生舞会 基础01分数规划 最大权匹配
#2003. 「SDOI2017」新生舞会 内存限制:256 MiB时间限制:1500 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 题目描述 ...
- AC日记——「SDOI2017」序列计数 LibreOJ 2002
「SDOI2017」序列计数 思路: 矩阵快速幂: 代码: #include <bits/stdc++.h> using namespace std; #define mod 201704 ...
- 「SDOI2016」数字配对
「SDOI2016」数字配对 题目大意 传送门 题解 \(a_i\) 是 \(a_j\) 的倍数,且 \(\frac{a_i}{a_j}\) 是一个质数,则将 \(a_i,a_j\) 质因数分解后,其 ...
- 【BZOJ4816】【SDOI2017】数字表格 [莫比乌斯反演]
数字表格 Time Limit: 50 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Doris刚刚学习了fibonac ...
- 【LOJ】#2128. 「HAOI2015」数字串拆分
题解 题中给的函数可以用矩阵快速幂递推 我们记一个数组dp[i](这个数组每个元素是一个矩阵)表示从1到i所有的数字经过拆分矩阵递推的加和 转移方法是 \(dp[i] = \sum_{j = 0}^{ ...
- LOJ2269. 「SDOI2017」切树游戏 [FWT,动态DP]
LOJ 思路 显然是要DP的.设\(dp_{u,i}\)表示\(u\)子树内一个包含\(u\)的连通块异或出\(i\)的方案数,发现转移可以用FWT优化,写成生成函数就是这样的: \[ dp_{u}= ...
随机推荐
- 关于vue-resource 转变成axios的过程
在做东钿贷后系统的时候,我选择了vue-resource这个插件作为与服务器沟通工具,但是听说前端同行说vuejs2.0已经不在维护vue-resource了,vuejs2.0 已经使用了axios了 ...
- 小白学phoneGap《构建跨平台APP:phoneGap移动应用实战》连载五(使用PhoneGap获取设备信息)
除了能够将HTML页面打包成可以直接安装运行的APP外,PhoneGap的一个最大优势在于可以通过JavaScript调用设备来访问设备上的硬件信息,从而实现一些原本只有依靠原生SDK才能够达到的目的 ...
- Linux系统日志分析
Linux系统拥有非常灵活和强大的日志功能,可以保存几乎所有的操作记录,并可以从中检索出我们需要的信息. 大部分Linux发行版默认的日志守护进程为 syslog,位于 /etc/syslog 或 / ...
- (转载)资源字典(Pro WPF 学习)
原地址:http://www.cnblogs.com/yxhq/archive/2012/07/09/2582508.html 1.创建资源字典 下面是一个资源字典(AppBrushes.xaml), ...
- Oracle 11g 新特性 – HM(Hang Manager)简介
在这篇文章中我们会对oracle 11g 新特性—hang 管理器(Hang Manager) 进行介绍.我们需要说明,HM 只在RAC 数据库中存在. 在我们诊断数据库问题的时候,经常会遇到一些数据 ...
- Ajax的原理及Django上传组件
title: Ajax的原理及Django上传组件 tags: Django --- Ajax的原理及Django上传组件 Ajax的原理 ajax 是异步JavaScript和xml ajax就是向 ...
- javaweb基础(20)_JavaBean总结
一.什么是JavaBean JavaBean是一个遵循特定写法的Java类,它通常具有如下特点: 这个Java类必须具有一个无参的构造函数 属性必须私有化. 私有化的属性必须通过public类型的方法 ...
- RabbitMQ Server的安装、配置及常用命令
首先需要安装Erlang环境: http://www.rabbitmq.com/server.html 下载RabbitMQ Server的windows安装包并安装到D盘下: http://www. ...
- 廖老师JavaScript教程高阶函数-sort用法
先来学习一个新词:高阶函数 高阶函数英文叫Higher-order function.那么什么是高阶函数? JavaScript的函数其实都指向某个变量.既然变量可以指向函数,函数的参数能接收变量,那 ...
- 微信iOS多设备多字体适配方案总结
一.背景 2014下半年,微信iOS版先后适配iPad, iPhone6/6plus.随着这些大屏设备的登场,部分用户觉得微信的字体太小,但也有很多用户不喜欢太大的字体.为了满足不同用户的需求,我们做 ...