题目简述:给定$n \leq 3 \times 10^5$个节点的树,其中一部分节点被染色,一共有$k$种不同的颜色。求将树划分成 $k$ 个不相交的部分的方案数,使得每个部分中除了未染色的节点以外的所有节点颜色相同,答案模$998244353$(质数)。

解:code

Step 1. 缩点

相关题目:CodeForces 76F. Tourist

观察:为使相同颜色的节点处在同一个子树中,则包含这些节点的最小子树的所有节点必然会被划分在同一部分。

因此,在随意选择一个节点作为树的根节点后,每种颜色的所有节点的LCA(最近公共祖先)必然也与这些节点在同一部分。

同时,我们也得到了无解判定:如果某两种颜色的节点的最小子树具有相同部分,则必定无解。

在判断有解之后,我们可以把每种颜色对应的最小子树缩成一个节点,则问题就转化为:

【一个$n \leq 3\times 10^5$个节点的树,其中有$k$个节点是被标记的,问有多少种方法把树分成$k$部分,每部分包含恰好一个被标记的节点。】

Step 2. 动态规划

我们在缩点之后,只需要解决转化后的问题。

设$f[x][s]$表示以$x$为根的子树有多少种划分方式,使得$x$所在的部分 【未包含$s=0$ / 包含$s=1$】 一个被标记的节点。于是答案为$f[r][1]$,其中$r$是根节点。

1. 若$x$未被标记,则

1.1. 若$x$所在部分未包含被标记的节点,则对每个$x$的儿子节点$y$,若$y$所在部分包含了被标记的节点,则必然不与$x$在同一部分;若$y$所在部分未包含被标记节点,则必然与$x$在同一部分,因此有$f[y][0]+f[y][1]$种可能。由乘法原理,有

$$ f[x][0] = \prod_{y \in \text{son}(x)} (f[y][0]+f[y][1]). $$

1.2. 若$x$所在部分包含被标记的节点,则枚举$x$的儿子节点$y$,其所在部分包含被标记节点,有$f[y][1]$种可能;对其他儿子节点$z \neq y$,若$z$所在部分包含了被标记的节点,则必然不与$x$在同一部分;若$z$所在部分未包含被标记节点,则必然与$x$在同一部分,因此有$f[z][0]+f[z][1]$种可能。由乘法原理和加法原理,有

$$ f[x][1] = \sum_{y \in \text{son}(x)} f[y][1] \prod_{y \neq z \in \text{son}(x)} (f[z][0]+f[z][1]). $$

2. 若$x$被标记,则

2.1. $x$所在部分不可能未包含被标记节点,即

$$ f[x][0] = 0, $$

2.2. 若$x$所在部分包含被标记的节点,则对每个$x$的儿子节点$y$,若$y$所在部分包含了被标记的节点,则必然不与$x$在同一部分;若$y$所在部分未包含被标记节点,则必然与$x$在同一部分,因此有$f[y][0]+f[y][1]$种可能。(这与1.1.的讨论相同)由乘法原理,有

$$ f[x][1] = \prod_{y \in \text{son}(x)} (f[y][0]+f[y][1]). $$

总时间复杂度为$O(n)$。

CodeForces 1118F2. Tree Cutting (Hard Version)的更多相关文章

  1. Codeforces 1118F1 Tree Cutting (Easy Version) (简单树形DP)

    <题目链接> 题目大意: 给定一棵树,树上的点有0,1,2三中情况,0代表该点无色.现在需要你将这棵树割掉一些边,使得割掉每条边分割成的两部分均最多只含有一种颜色的点,即分割后的两部分不能 ...

  2. Codeforces Round #540 (Div. 3) F1. Tree Cutting (Easy Version) 【DFS】

    任意门:http://codeforces.com/contest/1118/problem/F1 F1. Tree Cutting (Easy Version) time limit per tes ...

  3. Tree Cutting (Hard Version) CodeForces - 1118F2 (树形DP,计数)

    大意:给定树, 每个点有颜色, 一个合法的边集要满足删除这些边后, 每个连通块内颜色仅有一种, 求所有合法边集的个数 $f[x][0/1]$表示子树$x$中是否还有与$x$连通的颜色 对于每种颜色已经 ...

  4. Codeforces Round #540 (Div. 3)--1118F1 - Tree Cutting (Easy Version)

    https://codeforces.com/contest/1118/problem/F1 #include<bits/stdc++.h> using namespace std; in ...

  5. Codeforces 1118 F2. Tree Cutting (Hard Version) 优先队列+树形dp

    题目要求将树分为k个部分,并且每种颜色恰好在同一个部分内,问有多少种方案. 第一步显然我们需要知道哪些点一定是要在一个部分内的,也就是说要求每一个最小的将所有颜色i的点连通的子树. 这一步我们可以将所 ...

  6. 解题:CF1118F2 Tree Cutting (Hard Version)

    题面 好题不问Div(这是Div3最后一题,不得不说Mike真是强=.=) 首先同一个颜色的点的LCA要和它们在一个划分出的块里,那么我们先按颜色把所有点到它们的LCA的路径涂色,如果这个过程中出现了 ...

  7. 【HDU 5909】 Tree Cutting (树形依赖型DP+点分治)

    Tree Cutting Problem Description Byteasar has a tree T with n vertices conveniently labeled with 1,2 ...

  8. BZOJ3391: [Usaco2004 Dec]Tree Cutting网络破坏

    3391: [Usaco2004 Dec]Tree Cutting网络破坏 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 47  Solved: 37[ ...

  9. BZOJ 3391: [Usaco2004 Dec]Tree Cutting网络破坏( dfs )

    因为是棵树 , 所以直接 dfs 就好了... ---------------------------------------------------------------------------- ...

随机推荐

  1. ASP.NET动态网站制作(9)-- JQ(1)

    前言:从这节课开始讲jQuery的相关内容,这节课主要围绕jQuery的选择器展开. 内容: 1.jQuery是一个优秀的js框架,目前企业里大多数都是用jQuery(以下简称jq).jq是对js里一 ...

  2. antd引入普通html使用,将ant Design本地化

    一直想着能本地化antd的,不用npm以及dva那么复杂的配置环境来开发,并且本地化以后对以后链接flask的模板渲染机制也能很好的结合.下面是具体的实现方法: 1.将react的相关链接引入: &l ...

  3. 【oracle案例】ORA-01102: cannot mount database in EXCLUSIVE mode

    ORA-01102: cannot mount database in EXCLUSIVE mode 今天在fedora上安装完10g后,测试数据库是否安装成功.STARTUP数据库时,发生如下错误: ...

  4. 九度OJ 1039:Zero-complexity Transposition(逆置) (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3093 解决:1255 题目描述: You are given a sequence of integer numbers. Zero-co ...

  5. iOS怎样获取任何App的资源图片?

    1.打开iTunes,并与手机相连接 2.按照下图所示执行搜索并下载App 3.到Mac的 /Users/apple/Music/iTunes/iTunes Media/Mobile Applicat ...

  6. AsyncTask==Handler+Thread对比使用说明

    AsyncTask能够合理且轻松使用UI线程,该类允许执行后台操作和发送结果到UI线程而不需要操作threads或handlers. AsyncTask是针对Thread和Handler代替而封装好的 ...

  7. Nginx报出504 Gateway Timeout错误2

    昨天,一个程序需要导出500条数据,结果发现到150条是,Nginx报出504 Gateway Timeout错误 经观察,发现大约30秒时超时,php.ini中执行时间配置已经是300秒: 复制代码 ...

  8. [数据挖掘课程笔记]无监督学习——聚类(clustering)

    什么是聚类(clustering) 个人理解:聚类就是将大量无标签的记录,根据它们的特点把它们分成簇,最后结果应当是相同簇之间相似性要尽可能大,不同簇之间相似性要尽可能小. 聚类方法的分类如下图所示: ...

  9. API的理解和使用——有序集合

    有序集合常用的命令 命令 功能 zadd key score member [score member ... ] 添加元素 zcard key 计算成员个数 zscore key member 计算 ...

  10. C ~ 指针的运算

    一 :取地址运算“&”与取内容运算“*”: 单目运算“&”是取操作对象的地址 , “*”是取指针指向的对象的内容 , 两者互为逆运算 int x , *p ; p = &x ; ...