CodeChef Counting on a directed graph
Counting on a directed graph Problem Code: GRAPHCNT
Read problems statements in Mandarin Chineseand Russian.
Given an directed graph with N nodes (numbered from 1 to N) and M edges, calculate the number of unordered pairs (X, Y) such there exist two paths, one from node 1 to node X, and another one from node 1 to node Y, such that they don't share any node except node 1.
Input
There is only one test case in one test file.
The first line of each test case contains two space separated integers N, M. Each of the next M lines contains two space separated integers u, v denoting a directed edge of graph G, from node u to node v. There are no multi-edges and self loops in the graph.
Output
Print a single integer corresponding to the number of unordered pairs as asked in the problem..
Constraints and Subtasks
- 1 ≤ N ≤ 105
- 0 ≤ M ≤ 5 * 105
Subtask 1: (30 points)
- The graph is a Directed Acyclic Graph (DAG)i.e. there is no cycle in the graph.
Subtask 2: (20 points)
- N * M ≤ 50000000
Subtask 3 (50 points)
- No additional constraints
Example
Input:
6 6
1 2
1 3
1 4
2 5
2 6
3 6 Output:
14
Explanation
There are 14 pairs of vertices as follows:
(1,2)
(1,3)
(1,4)
(1,5)
(1,6)
(2,3)
(2,4)
(2,6)
(3,4)
(3,5)
(3,6)
(4,5)
(4,6)
(5,6)
Author:5★ztxz16
Tester:7★kevinsogo
Editorial:http://discuss.codechef.com/problems/GRAPHCNT
Tags:dominatormay15medium-hardztxz16
Date Added:25-03-2015
Time Limit:2 secs
Source Limit:50000 Bytes
Languages:ADA, ASM, BASH, BF, C, C99 strict, CAML, CLOJ, CLPS, CPP 4.3.2, CPP 4.9.2, CPP14, CS2, D, ERL, FORT, FS, GO, HASK, ICK, ICON, JAVA, JS, LISP clisp, LISP sbcl, LUA, NEM, NICE, NODEJS, PAS fpc, PAS gpc, PERL, PERL6, PHP, PIKE, PRLG, PYPY, PYTH, PYTH 3.4, RUBY, SCALA, SCM chicken, SCM guile, SCM qobi, ST, TCL, TEXT, WSPC
题意:
https://s3.amazonaws.com/codechef_shared/download/translated/MAY15/mandarin/GRAPHCNT.pdf
分析:
建出支配树,然后统计1号节点的每个儿子内部点对数量,这就是不合法的点对数量,用总的点对数量减去不合法的就好了...
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<stack>
using namespace std; const int maxn=100000+5,maxm=500000+5; int n,m,tot,f[maxn],fa[maxn],id[maxn],dfn[maxn],siz[maxn],node[maxn],semi[maxn],idom[maxn];
long long ans; stack<int> dom[maxn]; struct M{ int cnt,hd[maxn],to[maxm],nxt[maxm]; inline void init(void){
cnt=0;
memset(hd,-1,sizeof(hd));
} inline void add(int x,int y){
to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
} }G,tr; inline bool cmp(int x,int y){
return dfn[semi[x]]<dfn[semi[y]];
} inline int find(int x){
if(f[x]==x)
return x;
int fx=find(f[x]);
node[x]=min(node[f[x]],node[x],cmp);
return f[x]=fx;
} inline void dfs(int x){
dfn[x]=++tot;id[tot]=x;
for(int i=tr.hd[x];i!=-1;i=tr.nxt[i])
if(!dfn[tr.to[i]])
dfs(tr.to[i]),fa[tr.to[i]]=x;
} inline void LT(void){
dfs(1);dfn[0]=tot<<1;
for(int i=tot,x;i>=1;i--){
x=id[i];
if(i!=1){
for(int j=G.hd[x],v;j!=-1;j=G.nxt[j])
if(dfn[G.to[j]]){
v=G.to[j];
if(dfn[v]<dfn[x]){
if(dfn[v]<dfn[semi[x]])
semi[x]=v;
}
else{
find(v);
if(dfn[semi[node[v]]]<dfn[semi[x]])
semi[x]=semi[node[v]];
}
}
dom[semi[x]].push(x);
}
while(dom[x].size()){
int y=dom[x].top();dom[x].pop();find(y);
if(semi[node[y]]!=x)
idom[y]=node[y];
else
idom[y]=x;
}
for(int j=tr.hd[x];j!=-1;j=tr.nxt[j])
if(fa[tr.to[j]]==x)
f[tr.to[j]]=x;
}
for(int i=2,x;i<=tot;i++){
x=id[i];
if(semi[x]!=idom[x])
idom[x]=idom[idom[x]];
}
idom[id[1]]=0;
} signed main(void){
tr.init();G.init();
scanf("%d%d",&n,&m);
for(int i=1,x,y;i<=m;i++)
scanf("%d%d",&x,&y),tr.add(x,y),G.add(y,x);
for(int i=1;i<=n;i++)
f[i]=node[i]=i;
LT();ans=1LL*tot*(tot-1);
for(int i=tot;i>=2;i--){
siz[id[i]]++;
if(idom[id[i]]!=1)
siz[idom[id[i]]]+=siz[id[i]];
else
ans-=1LL*siz[id[i]]*(siz[id[i]]-1);
}
ans>>=1;
printf("%lld\n",ans);
return 0;
}
By NeighThorn
CodeChef Counting on a directed graph的更多相关文章
- [CareerCup] 4.2 Route between Two Nodes in Directed Graph 有向图中两点的路径
4.2 Given a directed graph, design an algorithm to find out whether there is a route between two nod ...
- [LintCode] Find the Weak Connected Component in the Directed Graph
Find the number Weak Connected Component in the directed graph. Each node in the graph contains a ...
- dataStructure@ Find if there is a path between two vertices in a directed graph
Given a Directed Graph and two vertices in it, check whether there is a path from the first given ve ...
- Directed Graph Loop detection and if not have, path to print all path.
这里总结针对一个并不一定所有点都连通的general directed graph, 去判断graph里面是否有loop存在, 收到启发是因为做了[LeetCode] 207 Course Sched ...
- Geeks - Detect Cycle in a Directed Graph 推断图是否有环
Detect Cycle in a Directed Graph 推断一个图是否有环,有环图例如以下: 这里唯一注意的就是,这是个有向图, 边组成一个环,不一定成环,由于方向能够不一致. 这里就是添加 ...
- Skeleton-Based Action Recognition with Directed Graph Neural Network
Skeleton-Based Action Recognition with Directed Graph Neural Network 摘要 因为骨架信息可以鲁棒地适应动态环境和复杂的背景,所以经常 ...
- Find the Weak Connected Component in the Directed Graph
Description Find the number Weak Connected Component in the directed graph. Each node in the graph c ...
- Detect cycle in a directed graph
Question: Detect cycle in a directed graph Answer: Depth First Traversal can be used to detect cycle ...
- 有向图寻找(一个)奇环 -- find an oddcycle in directed graph
/// the original blog is http://www.cnblogs.com/tmzbot/p/5579020.html , automatic crawling without l ...
随机推荐
- npm 常用指令 使用指令删除 node_modules 包
查看 npm 命令 npm help 全局命令参数 -g npm install -g 安装全局 npm uninstall -g 卸载全局 全局node包中 i5ting_toc 这个包可以把md文 ...
- linux内核--定时器API
/**<linux/timer.h> 定时器结构体 struct timer_list { ........ unsigned long expires; --内核希望定时器执行的jiff ...
- flock文件锁
linux中的定时任务crontab会定时执行一些脚本,但是脚本的时间往往无法控制,当脚本的执行时间过长,可能会导致上一次任务的脚本还没执行完,下一次任务的脚本又开始执行的问题.这种情况下会出现一些并 ...
- ATMstart
import os, sys BASE_DIR = os.path.dirname(__file__)sys.path.append(BASE_DIR) from core import src if ...
- 使用Xshell对虚拟机上的Ubuntu系统进行远程连接
需要在Linux上安装openssh-server 1.在Ubuntu系统的终端下输入命令:sudo apt install openssh-server 2.在Xshell中输入指定连接的主机IP, ...
- 51nod_1154 回文串的划分
说实话..最开始看这题感觉一定好难...好高大上...我的马拉车还不熟....这种..但是本着做不出来也要至少看看的心态,吧个题看完了..然后简单的想了想,好像是个挺直观的动态规划,因为看到数据几乎就 ...
- Harbor HA部署-使用Ceph RADOS后端
1. 前言 Harbor 1.4.0版本开始提供了HA部署方式,和非HA的主要区别就是把有状态的服务分离出来,使用外部集群,而不是运行在本地的容器上.而无状态的服务则可以部署在多个节点上,通过配置上层 ...
- 图学java基础篇之并发
概述 并发处理本身就是编程开发重点之一,同时内容也很繁杂,从底层指令处理到上层应用开发都要涉及,也是最容易出问题的地方.这块知识也是评价一个开发人员水平的重要指标,本人自认为现在也只是学其皮毛,因此本 ...
- TCP/IP网络编程之I/O复用
基于I/O复用的服务端 在前面章节的学习中,我们看到了当有新的客户端请求时,服务端进程会创建一个子进程,用于处理和客户端的连接和处理客户端的请求.这是一种并发处理客户端请求的方案,但并不是一个很好的方 ...
- Eclipse配置Maven工具
1.Maven安装,下载Maven二进行制文件: http://maven.apache.org/download.cgi 下载后解压,然后设置maven的bin目录到系统环境变量Path中,在cmd ...