BZOJ 1050: [HAOI2006]旅行comf(枚举+并查集)
[HAOI2006]旅行comf
Description
给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000)。给你两个顶点S和T
,求一条路径,使得路径上最大边和最小边的比值最小。如果S和T之间没有路径,输出”IMPOSSIBLE”,否则输出
这个比值,如果需要,表示成一个既约分数。 备注: 两个顶点之间可能有多条路径。
Input
第一行包含两个正整数,N和M。下来的M行每行包含三个正整数:x,y和v。表示景点x到景点y之间有一条双向
公路,车辆必须以速度v在该公路上行驶。最后一行包含两个正整数s,t,表示想知道从景点s到景点t最大最小速
度比最小的路径。s和t不可能相同。
1<N<=500,1<=x,y<=N,0<v<30000,0<M<=5000
Output
如果景点s到景点t没有路径,输出“IMPOSSIBLE”。否则输出一个数,表示最小的速度比。如果需要,输出一
个既约分数。
Sample Input
【样例输入1】
4 2
1 2 1
3 4 2
1 4
【样例输入2】
3 3
1 2 10
1 2 5
2 3 8
1 3
【样例输入3】
3 2
1 2 2
2 3 4
1 3
Sample Output
【样例输出1】
IMPOSSIBLE
【样例输出2】
5/4
【样例输出3】
2
分析:
由于结果关系到两个因素最大边和最小边,我们先排序然后可以枚举最小边,然后将小于改变的全部边忽略,找出该情况下起点到终点路径上最小的最大边,可以用spfa做,不过会比较慢,其实可以并查集,按从小到大的顺序将符合要求的边进行并查集处理,当s和t位于同一集合中时终止,当前的边为最小的最大边。然后找出比值max的即可。
代码:
program comf;
var
f:array[..]of longint;
a,b,c:array[..]of longint;
n,i,m,l,r,s,t,ans,j,x,y:longint;
function gcd(x,y:longint):longint;
var r:longint;
begin
r:=x mod y;
while r<> do
begin x:=y; y:=r; r:=x mod y; end;
exit(y);
end;
function find(x:longint):longint;
var i,j,k:longint;
begin
i:=x; j:=x;
while i<>f[i] do i:=f[i];
while i<>j do begin k:=f[j]; f[j]:=i; j:=k; end;
exit(i);
end;
procedure cheak(x,y:longint);
var t:longint;
begin
if x*r<y*l then begin t:=gcd(x,y); l:=x div t; r:=y div t; end;
end;
procedure qsort(l,h:longint);
var i,j,t,m:longint;
begin i:=l; j:=h;
m:=c[(i+j) div ];
repeat
while c[i]<m do inc(i);
while m<c[j] do dec(j);
if i<=j then
begin t:=a[i]; a[i]:=a[j]; a[j]:=t;t:=b[i]; b[i]:=b[j]; b[j]:=t;
t:=c[i]; c[i]:=c[j]; c[j]:=t;
inc(i); dec(j); end; until i>j;
if i<h then qsort(i,h); if j>l then qsort(l,j); end;
begin
readln(n,m);
for i:= to m do
readln(a[i],b[i],c[i]);
qsort(,m); l:=; r:=; readln(s,t);
for i:= to m do
begin
ans:=-;
for j:= to n do f[j]:=j;
for j:=i to m do
begin
x:=find(a[j]); y:=find(b[j]);
f[y]:=x;
x:=find(s); y:=find(t);
if x=y then begin ans:=j; break; end;
end;
if ans>- then cheak(c[ans],c[i]);
end;
if r= then writeln('IMPOSSIBLE')
else if r= then writeln(l) else writeln(l,'/',r);
end.
BZOJ 1050: [HAOI2006]旅行comf(枚举+并查集)的更多相关文章
- bzoj 1050 [HAOI2006]旅行comf (并查集)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1050 思路: 先将每条边的权值排个序优先小的,然后从小到大枚举每一条边,将其存到并查集 ...
- [BZOJ1050][HAOI2006]旅行comf 枚举+并查集
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1050 将边排序,枚举边权最小的边,依次加边直到S和T连通,更新答案. #include&l ...
- BZOJ 1050: [HAOI2006]旅行comf( 并查集 )
将edge按权值排序 , O( m² ) 枚举边 , 利用并查集维护连通信息. ------------------------------------------------------------ ...
- BZOJ 1050 [HAOI2006]旅行comf
1050: [HAOI2006]旅行comf Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1889 Solved: 976[Submit][Sta ...
- bzoj 1050: [HAOI2006]旅行comf【枚举+并查集】
m是5000,就想到了直接枚举比例 具体做法是是先把边按照边权从小到大排序,然后先枚举最小边权,再枚举最大边权,就是从最小边权里一个一个加进并查集里,每次查st是否联通,联通则退出,更新答案 #inc ...
- bzoj 1050: [HAOI2006]旅行comf(codevs.cn 1001 舒适的路线) 快排+并查集乱搞
没用的话:好像很久没发博客了,主要是懒太蒟找不到水题.我绝对没弃坑...^_^ 还用些话:本文为博主原创文章,若转载请注明原网址和作者. 进入正题: 先pa网址: bzoj :http://www.l ...
- BZOJ 1050: [HAOI2006]旅行comf (并查集 或 单调队列)
这是建空间后做的第一道题啊= =好水 排序,枚举最小边,然后并查集求出联通时的最大边 或者排次序,从小到大插边,如果插边时最小的边拿掉不会使s与t不联通,就删去。 code: #include< ...
- bzoj 1050: [HAOI2006]旅行comf&&【codevs1001】
Description 给你一个无向图,N(N<=500)个顶点, M(M<=5000)条边,每条边有一个权值Vi(Vi<30000).给你两个顶点S和T,求 一条路径,使得路径上最 ...
- bzoj 1050 [HAOI2006]旅行comf——kruscal
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1050 因为还有Impossible的情况,所以想到了kruscal.(?) 但好像不太行.然 ...
- BZOJ 1050 [HAOI2006]旅行comf(最小生成树)
题意 第一行包含两个正整数,N和M.下来的M行每行包含三个正整数:x,y和v.表示景点x到景点y之间有一条双向公路 ,车辆必须以速度v在该公路上行驶.最后一行包含两个正整数s,t,表示想知道从景点s到 ...
随机推荐
- Using an Image for the Layer’s Content
Using an Image for the Layer’s Content Because a layer is just a container for managing a bitmap ima ...
- Shell重启Tomcat脚本
#!/bin/bash echo -e "\n\n\n" #force kill flag,if equal [f] to force kill all flag="He ...
- 扩展 -------jQuery
本文摘要:http://www.liaoxuefeng.com/ 编写jQuery插件 为了满足需求,我们经常会调用一些插件,js插件都是别人写的,今天就来了解了解一些方法. 给jQuery对象绑定一 ...
- 使TextBox的内容换行
首先你把TextBox控件的MultiLine属性设置为True,然后把TextBox控件的Text属性根据程序需要,在需要换行的地方加入\r\n这样就可实现换行了
- Redis常用诊断命令
1.info 命令查看redis信息,可以指定要查看的section名 sections:Server,clients,memory,persistence,stats,replication,cpu ...
- 二十三、MySQL 事务
MySQL 事务 MySQL 事务主要用于处理操作量大,复杂度高的数据.比如说,在人员管理系统中,你删除一个人员,你即需要删除人员的基本资料,也要删除和该人员相关的信息,如信箱,文章等等,这样,这些数 ...
- php扩展开发-函数
我们首先找到快速上手文章里面关于函数定义的代码,以此说明然后开发PHP的函数 //php_myext.h PHP_FUNCTION(myext_hello);//函数申明,所有在myext.c文件定义 ...
- Visual Studio的下载安装
下载地址: 下载Visual Studio Code https://code.visualstudio.com/ 安装扩展包 安装图标 View->Extensions 搜索Icon 安装Ma ...
- Apache虚拟主机测试
一.虚拟机主机简介 部署多个站点,每个站点,希望用不同的域名和站点目录,或者是不同的端口,或不同的ip,就需要虚拟主机功能.简单的说一个http服务要配置多个站点,就需要虚拟主机.(一句话一个http ...
- 编译Kubelet二进制文件
1. 环境 系统:CentOS 7.2 Go:1.10.3 Kubernetes:1.10.4 2. 安装最新版go 编译的Kubernetes 1.10.4要求go版本在1.9.3以上,使用下面的y ...