一个效果还行的 无向图hash判同构的方法

求出每个点向其它点的最短路,然后排序,然后按字符串拼接起来,再按每个点的字符串 排序后的rank 作为每一个点的初始hash值

然后每一轮,把每个点的相邻点的上一轮hash值取出来排序,再字符串拼接+排序,得到这一轮的hash值。

做至hash值不再变化为止

无向图hash的更多相关文章

  1. BZOJ 4337: BJOI2015 树的同构 树hash

    4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...

  2. Codeforces Round #109 (Div. 2) E. Double Profiles hash

    题目链接: http://codeforces.com/problemset/problem/155/E E. Double Profiles time limit per test 3 second ...

  3. [51nod1676]无向图同构

    如果一个无向图重标号后与另一个无向图完全一致(即对于任意两点,他们之间的边在两个图中都存在或都不存在),则称两个无向图同构. 给定两个n个点m条边的无向图,判定两个无向图是否同构.不超过20组数据,n ...

  4. BZOJ.4298.[ONTAK2015]Bajtocja(Hash 启发式合并)

    题目链接 \(Description\) 给定\(d\)张无向图,每张图都有\(n\)个点.一开始,在任何一张图中都没有任何边. 接下来有\(m\)次操作,每次操作会给出\(a,b,k\),意为在第\ ...

  5. [BZOJ5109][LOJ #6252][P4061][CodePlus 2017 11月赛]大吉大利,今晚吃鸡!(最短路+拓扑排序+传递闭包+map+bitset(hash+压位))

    5109: [CodePlus 2017]大吉大利,晚上吃鸡! Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 107  Solved: 57[Sub ...

  6. BZOJ4337:[BJOI2015]树的同构(树hash)

    Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...

  7. [JSOI2017]原力(分块+map(hash))

    题目描述 一个原力网络可以看成是一个可能存在重边但没有自环的无向图.每条边有一种属性和一个权值.属性可能是R.G.B三种当中的一种,代表这条边上 原力的类型.权值是一个正整数,代表这条边上的原力强度. ...

  8. CodeForces - 154C:Double Profiles (hash+排序)

    You have been offered a job in a company developing a large social network. Your first task is conne ...

  9. 【线性基 集合hash】uoj#138. 【UER #3】开学前的涂鸦

    还需要加强分析题目特殊性质,设计对应特殊算法,少想多写大力dfs剪枝不要管MLETLE直接上的能力 红包是一个有艺术细胞的男孩子. 红包由于NOI惨挂心情不好,暑假作业又多,于是他开始在作业本上涂鸦. ...

随机推荐

  1. [剑指Offer]2.变态跳台阶

    题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1 ...

  2. Testing Is the Engineering Rigor of Software Development

    Testing Is the Engineering Rigor of Software Development Neal Ford DEVELOPERS LOVE TO USE TORTURED M ...

  3. karaf中利用Bundle引入外部log4j配置文件

    环境准备: 1.在karaf_home下新建 config及logs目录 2.将mylog4j.properties拷贝到config文件夹下 查看log4j-1.2.17.jar/MANIFEST. ...

  4. mysql delete auto_increment列时的注意问题

    1. 说明 在对带有AUTO_INCREMENT列的表delete掉所有数据时: (1)对于MyISAM表,在delete表中所有数据时没有任何风险,随意折腾: (2)对于InnoDB表,在delet ...

  5. css3 - 层次选择器

    div div { background: orange; } body>div { background: green; } .active+div { background: lime; } ...

  6. 我的Android进阶之旅------>解决:Execution failed for task ':app:transformResourcesWithMergeJavaResForDebug'.

    错误描写叙述 今天在Android Studio项目中添加了jackson的开发包,编译执行时候.引发了例如以下的错误: Error:Execution failed for task ':app:t ...

  7. 「零秒思考」是个神话,不过这款笔记术你值得拥有zz

    今天读完了赤羽雄二的<零秒思考>,作者是一位在麦肯锡公司工作了 14 年的资深顾问.依照作者的说法,「零秒思考」指的是: 瞬间便能认清现状, 瞬间便能整理问题, 瞬间便能考虑出解决办法, ...

  8. android IPC通信(上)-sharedUserId&amp;&amp;Messenger

    看了一本书,上面有一章解说了IPC(Inter-Process Communication,进程间通信)通信.决定结合曾经的一篇博客android 两个应用之间的通信与调用和自己的理解来好好整理总结一 ...

  9. mysql_num_rows

    mysql记录总条数 $sql3 = "select * from inviter where tuijianren = '$session' "; $res3 = mysql_q ...

  10. 【剑指Offer学习】【面试题62:序列化二叉树】

    题目:请实现两个函数,分别用来序列化和反序列化二叉树. 解题思路 通过分析解决前面的面试题6.我们知道能够从前序遍历和中序遍历构造出一棵二叉树.受此启示.我们能够先把一棵二叉树序列化成一个前序遍历序列 ...