RNNs在股票价格预测的应用

前言

RNN和LSTMs在时态数据上表现特别好,这就是为什么他们在语音识别上是有效的。我们通过前25天的开高收低价格,去预测下一时刻的前收盘价。每个时间序列通过一个高斯分布和2层LSTM模型训练数据。文章分为两个版块,外汇价格预测和每日盘中价格预测(30分钟、15分钟、5分钟,等等)。源代码请在文末获取!

外汇预测(用英语描述)

a. Daily Data is pulled from Yahoo’s Data Reader

b. Only the training set is preprocessed because we create a separate test set later on

c. “model_forex” is the model for to build and train.

d. Create separate daily test set by specifying dates which start after your training set ends.

e. You can see “model_forex” is plugged in here for running the prediction

predicted_st = predict_standard(X_test_stock,y_test_stock, model_forex)

盘中预测(用英语描述)

a. Intraday Data is pulled from Google’s API. The second argument is the time in seconds (900 secs = 15 mins) and the third argument it the number of days, the max backtrack day for Googles API is 15 days I believe.

df = get_google_data(INTRA_DAY_TICKER, 900, 150)

b. Preprocess the full set of data and train test split it with “train_test_split_intra”

c. “model_intra” is the model for to build and train.

d. You can see “model_intra” is plugged in here for running the prediction

predicted_intra = predict_intra(X_test_intra,y_test_intra, model_intra)

代码展示

SITE = "http://en.wikipedia.org/wiki/List_of_S%26P_500_companies"

def scrape_list(site):
   hdr = {'User-Agent': 'Mozilla/5.0'}
   req = urllib2.Request(site, headers=hdr)
   page = urllib2.urlopen(req)
   soup = BeautifulSoup(page)    table = soup.find('table', {'class': 'wikitable sortable'})
   sector_tickers = dict()    for row in table.findAll('tr'):
       col = row.findAll('td')        if len(col) > 0:
           sector = str(col[3].string.strip()).lower().replace(' ', '_')
           ticker = str(col[0].string.strip())            if sector not in sector_tickers:
               sector_tickers[sector] = list()
           sector_tickers[sector].append(ticker)    return sector_tickers
sector_tickers = scrape_list(SITE)
##Help functions to normalize and denormalize values
(省略)
# Sequence Length, or # of days of tradingSEQ_LENGTH = 25

# Number of units in the two hidden (LSTM) layersN_HIDDEN = 256

#Number of attributes used for each trading daynum_attr = 4

#Out of those attribute how many are indicatorsnum_indicators = 0

#Variable to help define how far you want your y to reachREWARD_LAG = 1

#How many dats ahead do you want to predictLOOK_AHEAD = 5

#Window StrideSTRIDE = 1
def _load_data(data, n_prev = SEQ_LENGTH):  
   docX, docY = [], []    for i in range(len(data)-n_prev):
       x,y = norm(data.iloc[i:i+n_prev,:num_attr].as_matrix(),data.iloc[i+n_prev-1,num_attr:].as_matrix())
       docX.append(x)
       docY.append(y)
   alsX = np.array(docX)
   alsY = np.array(docY)    return alsX, alsYdef _load_data_test(data, n_prev = SEQ_LENGTH):  
   docX, docY = [], []
   num_sequences = (len(data)-n_prev+1)/STRIDE    for i in range(num_sequences):
       i = i*STRIDE
       x = (data.iloc[i:i+n_prev,:num_attr].as_matrix())
       y = (data.iloc[i+n_prev-1,num_attr:].as_matrix())        #x,y = norm(data.iloc[i:i+n_prev,:num_attr].as_matrix(),data.iloc[i+n_prev-1,num_attr:].as_matrix())
       docX.append(x)
       docY.append(y)
   alsX = np.array(docX)
   alsY = np.array(docY)    return alsX, alsYdef _load_data_norm(data, n_prev = SEQ_LENGTH):  
   docX, docY = [], []    for i in range(len(data)-n_prev):
       x = np.array((data.iloc[i:i+n_prev,:num_attr].as_matrix()))
       y = np.array((data.iloc[i+n_prev-1,num_attr:].as_matrix()))
(省略)

外汇数据

##Dataset on just single ticker to test performancesdf = data.DataReader('EUR=X', 'yahoo', datetime(2010,8,1), datetime(2014,8,1))
# df['RSI'] = ta.RSI(df.Close.values,timeperiod=14)# _,_, macdhist = ta.MACD(df.Close.values, fastperiod=12, slowperiod=26, signalperiod=9)# df['MACDHist'] = macdhist
##Add the predicted coloumn Y, as the last coloumn can be defined however you think is a good representation of a good decision
##Clean the rest of the Data Frame
y = []for i in range(0,len(df)):    if i >= (len(df)- STRIDE):
       y.append(None)    else:        if (REWARD_LAG > 1):
           val = 0
           for n in range(REWARD_LAG):
               val = val + df['Close'][i+n+1]
           val = val / float(REWARD_LAG)
           y.append(val)        else:
           y.append(df['Close'][i+REWARD_LAG]) df['Y_Values'] =np.asarray(y)
df = df.dropna()#print (df)sliced_df = df.drop(['Adj Close','Volume'] ,axis=1)#print (sliced_df)#(X_train, y_train), (X_test, y_test) = train_test_split(sliced_df)(X_train, y_train) = train_test_split(sliced_df)
print(X_train[0],y_train[0])print (X_train.shape,y_train.shape)
(array([[-0.76244909, -0.75153814, -1.36800657, -1.28695383],
      [-1.28305706, -1.17005084, -1.66649887, -1.50673145],

(省略)

盘中数据

def get_google_data(symbol, period, window):
   url_root = 'http://www.google.com/finance/getprices?i='
   url_root += str(period) + '&p=' + str(window)
   url_root += 'd&f=d,o,h,l,c,v&df=cpct&q=' + symbol
   print(url_root)
   response = urllib2.urlopen(url_root)
   data = response.read().split('\n')    #actual data starts at index = 7
   #first line contains full timestamp,
   #every other line is offset of period from timestamp
   parsed_data = []
   anchor_stamp = ''
   end = len(data)    for i in range(7, end):
       cdata = data[i].split(',')        if 'a' in cdata[0]:            #first one record anchor timestamp
           anchor_stamp = cdata[0].replace('a', '')
           cts = int(anchor_stamp)        else:            try:
               coffset = int(cdata[0])
               cts = int(anchor_stamp) + (coffset * period)
               parsed_data.append((dt.datetime.fromtimestamp(float(cts)), float(cdata[1]), float(cdata[2]), float(cdata[3]), float(cdata[4]), float(cdata[5])))            except:                pass # for time zone offsets thrown into data
   df = pd.DataFrame(parsed_data)
   df.columns = ['ts', 'Open', 'High', 'Low', 'Close', 'Volume']
   df.index = df.ts    del df['ts']    return df

盘中创建单独的数据集

df = get_google_data('AAPL', 900, 150)#print(df)plt.plot(df['Close'].values[:])
y = []for i in range(0,len(df)):    if i >= (len(df)- REWARD_LAG):
       y.append(None)    else:        if (REWARD_LAG > 1):
           val = 0
           for n in range(REWARD_LAG):
               val = val + df['Close'][i+n+1]
           val = val / float(REWARD_LAG)
           y.append(val)
           print('here')        else:
           y.append(df['Close'][i+REWARD_LAG]) df['Y_Values'] =np.asarray(y)
df = df.dropna()
sliced_df = df.drop(['Volume'] ,axis=1)#print(sliced_df)(X_train, y_train), (X_test, y_test) = train_test_split_intra(sliced_df)#print(X_train[0],y_train[0])print(len(X_train),len(X_test))#print(X_test[0],y_test[0])
(1168, 108)

构建网络结构

model_intra = Sequential() 

model_intra.add(LSTM(N_HIDDEN, return_sequences=True, activation='tanh', input_shape=(SEQ_LENGTH, num_attr)))#model_intra.add(LSTM(N_HIDDEN, return_sequences=True, activation='tanh'))model_intra.add(LSTM(N_HIDDEN, return_sequences=False, activation='tanh'))

model_intra.add(Dense(1,activation='linear'))
model_intra.compile(loss="mean_squared_error", optimizer='adam')
model_intra_full = Sequential() model_intra_full.add(LSTM(N_HIDDEN, return_sequences=True, activation='tanh', input_shape=(SEQ_LENGTH, num_attr)))#model_intra_full.add(LSTM(N_HIDDEN, return_sequences=True, activation='tanh'))model_intra_full.add(LSTM(N_HIDDEN, return_sequences=False, activation='tanh')) model_intra_full.add(Dense(1,activation='linear'))
model_intra_full.compile(loss="mean_squared_error", optimizer='adam') model_forex = Sequential() model_forex.add(LSTM(N_HIDDEN, return_sequences=True, activation='tanh', input_shape=(SEQ_LENGTH, num_attr)))#model_forex.add(LSTM(N_HIDDEN, return_sequences=True, activation='tanh'))model_forex.add(LSTM(N_HIDDEN, return_sequences=False, activation='tanh')) model_forex.add(Dense(1,activation='linear'))
model_forex.compile(loss="mean_squared_error", optimizer

符合模型的模型和参数

print(X_train.shape)
print(y_train.shape)
(1018, 25, 4)
(1018, 1)
model_intra.fit(X_train, y_train, batch_size=50, nb_epoch=
Train on 1156 samples, validate on 12 samples
Epoch 1/150
1156/1156 [==============================] - 1s - loss: 1.9575 - val_loss: 0.5494
Epoch 2/150
1156/1156 [==============================] - 1s - loss: 1.4731 - val_loss: 0.4006

(省略)

辅助绩效评估功能

#Function to normalize the test input then denormalize the result. Calculate the rmse of the predicted values on the test setdef predict(X_test,y_test, myModel):
   predicted = []    for example in X_test:
       x = copy.copy(example)        #print (x)
       x_norm, mn, mx = normalize(x)
       toPred = []
       toPred.append(x_norm)
       add = np.array(toPred)        #Predict for the standard model
       predict_standard = myModel.predict(add)
       pred_st = copy.copy(predict_standard)
       y_real_st = deNormalizeY(pred_st,mn,mx)
       predicted.append(y_real_st[0])        #Predict for the bidirectional model#         predict_bidirectional = myModel.predict([add,add])#         pred_bi = copy.copy(predict_bidirectional)#         y_real_bi = deNormalizeY(pred_bi,mn,mx)#         predicted.append(y_real_bi[0])(省略)df_test = data.DataReader('EUR=X', 'yahoo', datetime(2014,8,1), datetime(2015,8,1))# df_test['RSI'] = ta.RSI(df_test.Close.values,timeperiod=14)# _,_, macdhist = ta.MACD(df_test.Close.values, fastperiod=12, slowperiod=26, signalperiod=9)# df_test['MACDHist'] = macdhisty = []for i in range(0,len(df_test)):    if i >= (len(df_test)- STRIDE):
        y.append(None)    else:        if (REWARD_LAG > 1):
           val = 0
           for n in range(REWARD_LAG):
               val = val + df_test['Close'][i+n+1]
           val = val / float(REWARD_LAG)
           y.append(val)        else:
           y.append(df_test['Close'][i+REWARD_LAG]) (省略)

MAE for LSTM is: [0.0035823152701196983]
MAE for doing nothing is: [0.0045693478326778786]
RMSE for LSTM is: [0.0050684837061917686]
RMSE for doing nothing is: [0.0061416562709802761]
Net profit for 0.0 threshhold is 245.261025777 making 234 trades
Net profit for 0.001 threshhold is 242.673572498 making 201 trades
(省略)

盘中交易评价和结果

def predict_intra(X_test, y_test, myModel):
   print(len(X_test))
   predicted = []    for example in X_test:        #Transform the training example into gaussing distribution
       x_norm, mean, std = normDist(np.array(example))        #Add examples to array to predict
       toPred = []
       toPred.append(x_norm)
       add = np.array(toPred)        #Predict these examples
       predict_standard = myModel.predict(add)
       pred = copy.copy(predict_standard)
       y_real = deNormDist(pred,mean,std)
       predicted.append(y_real[0])    return predicted predicted_intra = predict_intra(X_test,y_test, model_intra)
plt.figure(figsize=(20,20))
plt.plot(y_test)
plt.plot(predicted_intra)
plt.show()

MAE and RMSE 评估

sum_error = 0sum_error_donothing = 0for i in range(len(predicted_intra)):    if i>0:
       sum_error = sum_error + abs(predicted_intra[i] - y_test[i])
       sum_error_donothing = sum_error_donothing + abs(predicted_intra[i] - y_test[i-1])
MAE_lstm = sum_error/len(predicted_intra)
MAE_donothing = sum_error_donothing/len(predicted_intra)
print("MAE for LSTM is: " + str(MAE_lstm))
print("MAE for doing nothing is: " + str(MAE_donothing))
MAE for LSTM is: [0.091961468484759237]
MAE for doing nothing is: [0.16699238882416201]
sum_error = 0sum_error_donothing = 0for i in range(len(predicted_intra)):    if i>0:
       sum_error = sum_error + (predicted_intra[i] - y_test[i])**2
       sum_error_donothing = sum_error_donothing + (predicted_intra[i] - y_test[i-1])**2RMSE_lstm = (sum_error/len(predicted_intra))**(1.0/2.0)
RMSE_donothing = (sum_error_donothing/len(predicted_intra))**(1.0/2.0)
print("RMSE for LSTM is: " + str(RMSE_lstm))
print("RMSE for doing nothing is: " + str(RMSE_dono
RMSE for LSTM is: [0.15719269057322682]
RMSE for doing nothing is: [0.23207816758496383]

Policy的功能评价

net_profits = []
protits_per_trade = []for i in range(50):
   THRESH = i/10000.0
   LOT_SIZE = 100
   net_profit = 0
   num_trades = 0
   for i in range(len(predicted_intra)):        if i>1:
           predicted_change = ((predicted_intra[i] / y_test[i-1]) - 1)            #print(predicted_change)
           actual_change = (predicted_intra[i] -  y_test[i])*LOT_SIZE            if predicted_change >= THRESH:                #print("Buy")
               net_profit = net_profit + actual_change
               num_trades = num_trades + 1
(省略)
(array([327.67074597699519], dtype=object), 106)
(array([322.81673063817777], dtype=object), 103)
plt.plot(net_profits)
plt.show()

plt.plot(protits_per_trade)
plt.show()

其他

buyTotal = 0sellTotal = 0correct = 0sellCorrect = 0buyCorrect = 0for i in range(len(predicted_st)):
   realAnswer = y_test_stock[i][0][0]    if predicted_st[i][1] > predicted_st[i][0]:
       predicted = 0 #Buy
   else:
       predicted = 1 #Sell    if realAnswer == 0:        ##This is where the actual answer is Buy:Up:[0,1]:0
       buyTotal = buyTotal + 1
       if predicted == realAnswer:
           buyCorrect = buyCorrect + 1
           correct = correct + 1(省略)
(349, 730, 0.4780821917808219)
(210, 382, 0.5497382198952879)
(139, 348, 0.3994252873563218)
0.523287671233
0.476712328767
MMM
AYI
ALK
ALLE(省略)

创造基线RMSE

totalCorrect = 0total = 0for stock in testing_dataframes[:50]:

    X_test_stock, y_test_stock = _load_data_test(stock[1])
   predicted_st = predict_standard(X_test_stock,y_test_stock, model)    buyTotal = 0
   sellTotal = 0
   correct = 0
   sellCorrect = 0
   buyCorrect = 0(省略)
#Count the number of positive and the number of negative calls you got righttotalCorrect = 0total = 0buyTotal = 0sellTotal = 0correct = 0sellCorrect = 0buyCorrect = 0for i in range(len(predicted_st)):
   realAnswer = y_test_stock[i][0][0]    if predicted_st[i][1] > predicted_st[i][0]:
       predicted = 0 #Buy
(省略)
(104, 235, 0.4425531914893617)
(104, 104, 1.0)
(0, 131, 0.0)
0.442553191489
0.557446808511
from sklearn.metrics import f1_score##Calculate F1 scoreactual = []
result = []for y in y_test_merged:    if y[0] == 0:
       actual.append(0)    else:
       actual.append(1)for y in predicted_st:    if y[1] > y[0]:
       result.append(0)    else:
       result.append(1)
score = f1_score(actual,result,average='weighted',pos_label=1)
print(score)
0.498192044998
#Same percentage calculations but with a thresholdTHRESH = 0.1totalCorrect = 0total = 0noDecision = 0buyTotal = 0sellTotal = 0correct = 0sellCorrect = 0buyCorrect = 0for i in range(len(predicted_st)):
   realAnswer = y_test_merged[i][0]    if predicted_st[i][1] - THRESH > .5:
       predicted = 0 #Buy
   elif predicted_st[i][0] - THRESH > .5:
       predicted = 1 #Sell
   else:
       predicted = 2 #Pass, do not count towards percentages because you make no decision if .6>x>.4(省略)
(347, 750, 0.46266666666666667)
(190, 351, 0.5413105413105413)
(157, 399, 0.39348370927318294)
If you just predicted all Up 0.468
If you just predicted all Down 0.532
thresholds = []
totalAcc = []
positiveAcc = []
negativeAcc = []##Graph this graph of the threshold vs accuracyfor i in range(10):
   thresh = i/100.0
   totalCorrect = 0
   total = 0
   noDecision = 0
   buyTotal = 0
   sellTotal = 0
   correct = 0
   sellCorrect = 0
   buyCorrect = 0
   for i in range(len(predicted_st)):
       realAnswer = y_test_merged[i][0]        if predicted_st[i][1] - thresh > .5:
           predicted = 0 #Buy
       elif predicted_st[i][0] - thresh > .5:
           predicted = 1 #Sell
(省略)   
plt.plot(totalAcc)
plt.show()

plt.plot(positiveAcc)
plt.show()

plt.plot(negativeAcc)
plt.show()

通过测试表明,每日价格预测,外汇有更好的表现,比传统股票。因为他有更少的噪音。

RNNs在股票价格预测的应用的更多相关文章

  1. 【python量化】将Transformer模型用于股票价格预测

    本篇文章主要教大家如何搭建一个基于Transformer的简单预测模型,并将其用于股票价格预测当中.原代码在文末进行获取.小熊猫的python第二世界 1.Transformer模型 Transfor ...

  2. 股票价格涨跌预测—基于KNN分类器

    code{white-space: pre;} pre:not([class]) { background-color: white; }if (window.hljs && docu ...

  3. 基于 Keras 的 LSTM 时间序列分析——以苹果股价预测为例

    简介 时间序列简单的说就是各时间点上形成的数值序列,时间序列分析就是通过观察历史数据预测未来的值.预测未来股价走势是一个再好不过的例子了.在本文中,我们将看到如何在递归神经网络的帮助下执行时间序列分析 ...

  4. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  5. 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】

    转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...

  6. 机器学习&深度学习经典资料汇总,data.gov.uk大量公开数据

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

  7. Python学习路径和个人增值(整合版)

    PS:内容来源于网络 一.简介         Python是一种面向对象.直译式计算机程序设计语言,由Guido van Rossum于1989年底发明.由于他简单.易学.免费开源.可移植性.可扩展 ...

  8. 【莫烦Pytorch】【P1】人工神经网络VS. 生物神经网络

    滴:转载引用请注明哦[握爪] https://www.cnblogs.com/zyrb/p/9700343.html 莫烦教程是一个免费的机器学习(不限于)的学习教程,幽默风俗的语言让我们这些刚刚起步 ...

  9. LSTM(长短期记忆网络)及其tensorflow代码应用

     本文主要包括: 一.什么是LSTM 二.LSTM的曲线拟合 三.LSTM的分类问题 四.为什么LSTM有助于消除梯度消失 一.什么是LSTM Long Short Term 网络即为LSTM,是一种 ...

随机推荐

  1. 测试MS题

    购物车测试点:  1.界面测试        界面布局.排版是否合理:文字是否显示清晰:不同卖家的商品是否区分明显. 2.功能测试 未登录时: 将商品加入购物车,页面跳转到登录页面,登录成功后购物车数 ...

  2. pta编程题19 Saving James Bond 2

    其它pta数据结构编程题请参见:pta 题目 和简单版本不同的是,简单版本只需判断能否到达岸边,而这个版本要求求出最少跳数的路径. 简单版本用dfs实现,而这道题用BFS实现. 注意: 岛半径为7.5 ...

  3. java Vamei快速教程07 包

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们已经写了一些Java程序.之前的每个Java程序都被保存为一个文件,比如Tes ...

  4. 如何查看CRM WebUI,C4C和Hybris里的页面技术信息

    CRM 在WebClient UI页面上按F2,就能看到页面的技术信息, 可以找到当前页面是哪一个BSP component实现的: C4C 在浏览器url里添加debugMode=true,然后按住 ...

  5. JSP开发过程遇到的中文乱码问题及解决方案

    对于程序猿来说,乱码问题真的很头疼,下面列举几种常见的乱码. 1.数据库编码不一致导致乱码 解决方法: 首先查看数据库编码,输入: show variables like "%char%&q ...

  6. IOS 获取手机的屏幕宽度

    //屏幕的宽度 CGFloat screenW=[UIScreen mainScreen].bounds.size.width;

  7. 关于profile集合

    profile集合是mongodb的慢操作日志 > db.getProfilingStatus() { , , } 可以通过getProfilingStatus来查看当前profile设置 pr ...

  8. pymysql 简单操作数据库

    #!/usr/bin/env python #-*- coding:utf-8 -*- # author:leo # datetime:2019/4/24 15:22 # software: PyCh ...

  9. 01HTML

    1.认识HTML标记 2.元信息标记meta 2.1设置页面关键字 2.2设置页面说明 2.3定义编辑工具 2.4添加作者信息 2.5设置网页文字及语言 2.6设置网页的定时跳转 <html&g ...

  10. 使用Scanner类获取键盘输入的会员卡号,并将该数据存储在变量中,输出这个变量的信息

    package come.one01;import java.util.Scanner; // 导入Scanner类public class One03 { public static void ma ...