就是海赛(海色)矩阵,在网上搜就有。

在数学中,海色矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵,

Hessian矩阵是多维变量函数的二阶偏导数矩阵,H(i,j)=d^2(f)/(d(xi)d(xj))

它是对称的。如果是正定的的可用导数=0的变量组确定它的极小值,负定的确定它的极大值,否则无法确定极值。 

1.极值(极大值或极小值)的定义

设有定义在区域D  Rn上的函数 y=f(x)=f(x1,...,xn) . 对于区域D的一内点x0=(x10,...,xn0),若存在x0的一个邻域UD,使得

             f(x)≤f(x0)     x∈U

     则称x0是f(x)的极大点,f(x0)称为f(x)的极大值.

     相反,如

             f(x)≥f(x0)     x∈U

     则称x0是f(x)的极小点,f(x0)称为f(x)的极小值.

2.海赛(Hessian)矩阵

  设函数y=f(x)=f(x1,...,xn)在点x0=(x10,...,xn0)的一个邻域内所有二阶偏导数连续,则称下列矩阵H为f(x)在x0点的海赛矩阵.

显然海赛矩阵是对称的,从而它的所有特征根均为实数.

3.极值

存在的必要条件

若x0是f(x)的极值点,如果存在,则

     进一步设在一个邻域内所有二阶导数连续,H为在点x0的海赛矩阵.则

    (1)x0是f(x)的极小点  H≥0,即H 的特征根均为非负.

    (2)x0是f(x)的极大点H≤0,即H的特征根为非正.

若在x0点有,则称x0是f(x)的临界点,f(x0)为临界值.

4.极值存在的充分条件

  设f(x)在x0的一个邻域内所有二阶偏导数连续,且x0是f(x)的临界点(即),H为f(x)在x0点的海赛矩阵,则

  (1)H>0,即H为正定矩阵x0是f(x)的极小点.

  (2)H<0,即H为负定矩阵x0是f(x)的极大点.

  (3)H的特征根有正有负x0不是f(x)的极值点.

  (4)其余情况,则不能判定x0是或者不是f(x)的极值点.

5.二元函数极值存在的充分条件

  作为4的特例。观察二元函数极值存在的充分条件.

  设z=f(x,y)在(x0,y0)的一个邻域内所有二阶偏导数连续,  且,

  记 .

  那么,海赛矩阵.

  (1)若A>0,detH=AC-B2>0,则H正定,从而(x0,y0)是f(x,y)的极小点.

  (2)若A<0,detH=AC-B2>0,则H负定,从而(x0,y0)是f(x,y)的极大点.

  (3)若detH=AC-B2<0,则H的特征根有正有负,从而(x0,y0)不是f(x,y)的极值点.

  (4)若detH=AC-B2=0,则不能判定(x0,y0)是否为f(x,y)的极值点.

6.条件极值

求函数      y=f(x)=f(x1,...,xn)         x∈DRn                    (1),

     在约束条件:qk(x)=qk(x1,...,xn)=0,k=1,...,m,m<n             (2),

     下的极值,称为条件极值问题.

     此处,假设雅可比矩阵的秩在D内处处为m,即保证m个约束条件是独立的.

直接代入法

     从约束条件(2)中直接解出m个变量,代入到(1)中,将问题化为求n-m个变量函数的直接极值问题.

拉格朗日(Lagrange)乘数法

     引入拉格朗日函数:

                    (3)

     其中λ1,...,λm称为拉格朗日乘子,是待定常数.

     条件极值问题(1)和(2)可化为求拉格朗日函数(3)的直接极值问题.

    (1) 若x0为(1)和(2)的条件极值点,则x0满足方程组

满足上述方程组的点称为条件极值问题的临界点.显然极值点为临界点,而临界点未必一定是极值点.

    (2)若x0是临界点, HL为拉格朗日函数L在x0点的海赛矩阵, 则可按4中给出的极值存在的充分条件,由HL的正定、负定或不定,判断x0是极小点、极大点或不是极值点.
http://zhidao.baidu.com/link?url=p1cPMKHMIGidZRYfTDDP5RwTW9sAe0xPk4Y-DQR03htxWCNFElxq1Ql809b17ROi8GKZctHnReZadk_xw5Qpwa
http://blog.csdn.net/memray/article/details/9174705 雅可比和海森矩阵的对比
http://zh.wikipedia.org/wiki/海森矩阵 wiki百科

目标检测之基础hessian matrix ---海森矩阵的更多相关文章

  1. [转帖]海森矩阵(Hessian matrix)

    http://hi.baidu.com/imheaventian/item/c8591b19907bd816e2f98612

  2. 使用python,pytorch求海森Hessian矩阵

    考虑一个函数$y=f(\textbf{x}) (R^n\rightarrow R)$,y的Hessian矩阵定义如下: 考虑一个函数:$$f(x)=b^Tx+\frac{1}{2}x^{T}Ax\\其 ...

  3. [炼丹术]基于SwinTransformer的目标检测训练模型学习总结

    基于SwinTransformer的目标检测训练模型学习总结 一.简要介绍 Swin Transformer是2021年提出的,是一种基于Transformer的一种深度学习网络结构,在目标检测.实例 ...

  4. 深度学习中目标检测Object Detection的基础概念及常用方法

    目录 关键术语 方法 two stage one stage 共同存在问题 多尺度 平移不变性 样本不均衡 各个步骤可能出现的问题 输入: 网络: 输出: 参考资料 What is detection ...

  5. 机器学习(ML)十六之目标检测基础

    目标检测和边界框 在图像分类任务里,我们假设图像里只有一个主体目标,并关注如何识别该目标的类别.然而,很多时候图像里有多个我们感兴趣的目标,我们不仅想知道它们的类别,还想得到它们在图像中的具体位置.在 ...

  6. 第二十九节,目标检测算法之R-CNN算法详解

    Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmenta ...

  7. [转]CNN目标检测(一):Faster RCNN详解

    https://blog.csdn.net/a8039974/article/details/77592389 Faster RCNN github : https://github.com/rbgi ...

  8. 目标检测从入门到精通—R-CNN详细解析(二)

    R-CNN目标检测详细解析 <Rich feature hierarchies for Accurate Object Detection and Segmentation> Author ...

  9. (二)目标检测算法之R-CNN

    系列博客链接: (一)目标检测概述 https://www.cnblogs.com/kongweisi/p/10894415.html 概述: 1.目标检测-Overfeat模型 2.目标检测-R-C ...

随机推荐

  1. vim技巧记录底行模式的使用(1)

    若正在编辑文件,临时须要查看目录: (1)直接在底行模式下使用ls命令,完整的为:!ls 在我这里就显示如下的结果: functionpointer    helloWorld.s       tes ...

  2. C语言中的内存相关问题

    内存是用来存储数据与程序的,对我们写程序来说非常重要.所以内存对程序来说几乎是本质需求.越简单的程序需要越少的内存,而越庞大越复杂的程序需要更多的内存. 注意:在嵌入式系统中有ROM和RAM两类内存, ...

  3. hdu 4519(数学题)

    郑厂长系列故事——体检 Time Limit: 500/200 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total S ...

  4. nodejs后台启动

    可避免关闭窗口,程序就关闭,可在后台运行 安装forever包,一般用于服务器,调试环境可不安装 npm install forever -g 启动方式如图: 查询后台运行哪些程序 forever l ...

  5. mysql中文乱码的解决方法

    MySQL的字符集支持(Character Set Support)有两个方面: 字符集(Character set)和排序方式(Collation).对于字符集的支持细化到四个层次: 服务器(ser ...

  6. Tmux常用快捷键及命令

    Exported from workflowy! tmux session start/create session- tmux- tmux new-session -s portage listin ...

  7. UIScrollView/UITableView 一直显示滚动条(ScrollBar Indicators)、滚动条Width(宽度)、滚动条Color(颜色)

    在 IOS 中,对 UIScrollView 的滚动条(ScrollBar Indicators)的自定义设置接口,一直都是很少的.除了能自定义简单的样式(UIScrollViewIndicatorS ...

  8. 转:GRADLE构建最佳实践

    转自: http://www.figotan.org/2016/04/01/gradle-on-android-best-practise/#section-2 随着谷歌对Eclipse的无情抛弃和对 ...

  9. DevExpress控件之TreeList

    基于v18.1 使用AppendNode方法手动赋值时,首先要添加treeListColumn 默认样式                                     修改后的样式   1 ...

  10. [java面试]关于多态性的理解

    执行时多态性是面向对象程序设计代码重用的一个最强大机制.Java多态性的概念也能够被说成"一个接口.多个方法".Java实现执行时多态性的基础是动态方法调度,它是一种在执行时而不是 ...