Foj 2148 二维几何(点是否在三角形内)
题目大意:给n个坐标(不存在三点共线的点),求能够组成多少个凸四边形。
#include<iostream>
#include<cstdio>
#include<cmath>
using namespace std; struct Point
{
int x,y;
Point(int x=,int y=):x(x),y(y){}
}p[]; typedef Point Vector; Vector operator - (Vector A, Vector B){ return Vector(A.x-B.x,A.y-B.y);} int AbsCross(Vector A,Vector B){ return fabs(A.x*B.y-A.y*B.x);} Point read_point()
{
Point p1;
scanf("%d %d",&p1.x,&p1.y);
return p1;
} bool fun(int i,int j,int k,int m)
{
int area1,area2,area3,area4,sum;
area1=AbsCross(p[j]-p[i],p[k]-p[i]);
area2=AbsCross(p[j]-p[i],p[m]-p[i]);
area3=AbsCross(p[k]-p[i],p[m]-p[i]);
area4=AbsCross(p[k]-p[j],p[m]-p[j]);
sum=area2+area3+area4;
if(sum!=area1) return true;
return false;
} bool is_ok(int i,int j,int k,int m)
{
if(!fun(i,j,k,m)) return false;
if(!fun(i,j,m,k)) return false;
if(!fun(i,k,m,j)) return false;
if(!fun(j,k,m,i)) return false;
return true;
} int main()
{
int i,j,k,m,n,T,Icase,ans;
scanf("%d",&T);
for(Icase=;Icase<=T;Icase++)
{
ans=;
scanf("%d",&n);
for(i=;i<n;i++) p[i]=read_point();
for(i=;i<n-;i++)
{
for(j=i+;j<n-;j++)
{
for(k=j+;k<n-;k++)
{
for(m=k+;m<n;m++)
{
if(is_ok(i,j,k,m))
ans++;
}
}
}
}
printf("Case %d: %d\n",Icase,ans);
}
return ;
}
Foj 2148 二维几何(点是否在三角形内)的更多相关文章
- UVa 12304 (6个二维几何问题合集) 2D Geometry 110 in 1!
这个题能1A纯属运气,要是WA掉,可真不知道该怎么去调了. 题意: 这是完全独立的6个子问题.代码中是根据字符串的长度来区分问题编号的. 给出三角形三点坐标,求外接圆圆心和半径. 给出三角形三点坐标, ...
- Codeforces#514D(三分,简单二维几何)
#include<bits/stdc++.h>using namespace std;const double eps=1e-8;int n; struct node{ double ...
- uva 11178二维几何(点与直线、点积叉积)
Problem D Morley’s Theorem Input: Standard Input Output: Standard Output Morley’s theorem states tha ...
- C++二维数组动态内存分配
对于二维数组和二维指针的内存的分配 这里首选说一下一维指针和一维数组的内存分配情况. 一维: 数组:形如int a[5];这里定义了一个一维数组a,并且数组的元素个数是5,这里的a是这五个元素的整体 ...
- 二维指针*(void **)的研究(uC/OS-II案例) 《转载》
uC/OS-II内存管理函数内最难理解的部分就是二维指针,本文以图文并茂的方式对二维指针进行了详细分析与讲解.看完本文,相信对C里面指针的概念又会有进一步的认识. 一.OSMemCreate( ) 函 ...
- 剑指offer-面试题3.二维数组中的查找
题目:在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增 的顺序排序.请完成一个函数,输入这样的一个二维数组和一个整数,判断该数组中是否有该整数. 算法流程如下: 比如一个 ...
- H5JS二维动画制作!two.js的基本操作class1
今天介绍一个网络上并不常用的插件two.js,刚开始学习的过程中,发现网上并没有合适的教程,在此发表基本操作 two.js是一款网页二维绘图软件,可以在指定区域内产生自设的各种动画效果 下载网址如下: ...
- React Native 二维码扫描组件
学rn得朋友们,你们知道rn开源项目吗?来吧看这里:http://www.marno.cn/(rn开源项目) React Native学习之路(9) - 注册登录验证的实现 + (用Fetch实现po ...
- 微信长按识别二维码,在 vue 项目中的实现
微信长按识别二维码是 QQ 浏览器的内置功能,该功能的基础一定要使用 img 标签引入图片,其他方式的二维码无法识别. 在 vue 中使用 QrcodeVue 插件 demo1 在 template ...
随机推荐
- RabbitMQ 学习资料
https://www.rabbitmq.com/getstarted.html http://www.cnblogs.com/luxiaoxun/p/3918054.html http://back ...
- 在ASP.NET项目中的web.config文件里配置数据库连接并在程序代码中获取连接字符串
1.在<connectionStrings> 标签里添加连接 <connectionStrings> <add name="ConnectionName&q ...
- iview Tooltip换行及应用
第一种: <Tooltip placement="bottom"> <Button>Multiple lines</Button> <di ...
- Unity基础-脚本的加载与编译顺序
脚本的加载与编译顺序 C#是以Assembly(汇编集)为一个基本单元组织代码的,dll就是一个assembly,dll之间有加载以来顺序 Assets/*.dll Stamdard Assets/* ...
- Ubuntu 下安装mysqlclient报错
pip3 install mysqlclient 报错信息 问题描述: Complete output from command python setup.py egg_info: /bin/sh: ...
- Re:从零开始的Linux之路(目录配置)
基于 Red Hat Enterprise Linux 7.5 或者 CentOS 7.4 FHS协议(Filesystem Hierarchy Standard)——文件系统层次化标准 该标准定义了 ...
- UVa 10655 Contemplation! Algebra 矩阵快速幂
题意: 给出\(p=a+b\)和\(q=ab\),求\(a^n+b^n\). 分析: 这种题目关键还是在于构造矩阵: \(\begin{bmatrix} 0 & 1 \\ -(a+b) &am ...
- UTV - URL Tag Validation
What`s UTV 1.URL Tag Validation 2.Special format of URL for preventing unauthorized usage and access ...
- [转载]ExtJs4 笔记(2) ExtJs对js基本语法扩展支持
作者:李盼(Lipan)出处:[Lipan] (http://www.cnblogs.com/lipan/) 本篇主要介绍一下ExtJs对JS基本语法的扩展支持,包括动态加载.类的封装等. 一.动态引 ...
- Maven项目下Tomcat插件选择方法
1. 进入Tomcat官网:http://tomcat.apache.org/ 选择Maven plugin 2. 选择版本 3. 查看版本对应的插件版本: 有两种方式添加:如下图所示: