Rotational Painting

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2498    Accepted Submission(s): 702

Problem Description
Josh Lyman is a gifted painter. One of his great works is a glass painting. He creates some well-designed lines on one side of a thick and polygonal glass, and renders it by some special dyes. The most fantastic thing is that it can generate different meaningful paintings by rotating the glass. This method of design is called “Rotational Painting (RP)” which is created by Josh himself.

You are a fan of Josh and you bought this glass at the astronomical sum of money. Since the glass is thick enough to put erectly on the table, you want to know in total how many ways you can put it so that you can enjoy as many as possible different paintings hiding on the glass. We assume that material of the glass is uniformly distributed. If you can put it erectly and stably in any ways on the table, you can enjoy it.

More specifically, if the polygonal glass is like the polygon in Figure 1, you have just two ways to put it on the table, since all the other ways are not stable. However, the glass like the polygon in Figure 2 has three ways to be appreciated. 

Pay attention to the cases in Figure 3. We consider that those glasses are not stable.

 
Input
The input file contains several test cases. The first line of the file contains an integer T representing the number of test cases.

For each test case, the first line is an integer n representing the number of lines of the polygon. (3<=n<=50000). Then n lines follow. The ith line contains two real number xi and yi representing a point of the polygon. (xi, yi) to (xi+1, yi+1) represents a edge of the polygon (1<=i<n), and (xn,yn) to (x1, y1) also represents a edge of the polygon. The input data insures that the polygon is not self-crossed.

 
Output
For each test case, output a single integer number in a line representing the number of ways to put the polygonal glass stably on the table.
 
Sample Input
2
4
0 0
100 0
99 1
1 1
6
0 0
0 10
1 10
1 1
10 1
10 0
 
Sample Output
2
3

Hint

The sample test cases can be demonstrated by Figure 1 and Figure 2 in Description part.

题目大意:给一个多边形,问把它放到平面上是稳定状态的(重心在支撑点以内,在支撑点是不稳定的)种数。
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std; const double eps=1e-;
const double Pi=acos(-1.0);
struct Point
{
double x,y;
Point(double x=,double y=):x(x),y(y) {}
};
typedef Point Vector;
Vector operator +(Vector A,Vector B){return Vector(A.x+B.x,A.y+B.y);}
Vector operator -(Vector A,Vector B){return Vector(A.x-B.x,A.y-B.y);}
Vector operator *(Vector A,double p){return Vector(A.x*p,A.y*p);}
Vector operator /(Vector A,double p){return Vector(A.x/p,A.y/p);}
bool operator < (const Point &a,const Point &b)
{
return a.x<b.x||(a.x==b.x&&a.y<b.y);
}
int dcmp(double x)
{
if(fabs(x)<eps) return ;
else return x<?-:;
}
bool operator == (const Point &a,const Point &b){
return (dcmp(a.x-b.x)== && dcmp(a.y-b.y)==);
}
double Dot(Vector A,Vector B){return A.x*B.x+A.y*B.y;}//点积
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}//叉积
Point GetLineProjection(Point P,Point A,Point B)//P在直线AB上的投影点
{
Vector v=B-A;
return A+v*(Dot(v,P-A)/Dot(v,v));
}
bool OnSegment(Point p,Point a1,Point a2)//点是否在直线上(不包括端点)
{
return dcmp(Cross(a1-p,a2-p))== && dcmp(Dot(a1-p,a2-p))<;
}
Point getcenter(vector<Point> p)//多边形的重心
{
double area=;
Point c=Point(,);
int i,n=p.size();
for(i=;i<n-;i++)
{
double temp=Cross(p[i]-p[],p[i+]-p[]);
c.x+=temp*(p[i].x+p[i+].x+p[].x)/3.0;
c.y+=temp*(p[i].y+p[i+].y+p[].y)/3.0;
area+=temp;
}
c.x/=area;c.y/=area;
return c;
}
vector<Point> ConvexHull(vector<Point>& p)//求凸包
{
sort(p.begin(), p.end());
p.erase(unique(p.begin(), p.end()), p.end());
int i,n = p.size();
int m = ;
vector<Point> ch(n+);
for(i = ; i < n; i++) {
while(m > && Cross(ch[m-]-ch[m-], p[i]-ch[m-]) <= ) m--;
ch[m++] = p[i];
}
int k = m;
for(i = n-; i >= ; i--) {
while(m > k && Cross(ch[m-]-ch[m-], p[i]-ch[m-]) <= ) m--;
ch[m++] = p[i];
}
if(n > ) m--;
ch.resize(m);
return ch;
} void solve(vector<Point> p,Point center)
{
int ans=,n=p.size();
for(int i=;i<n;i++)
{
Point t=GetLineProjection(center,p[i],p[(i+)%n]);
if(OnSegment(t,p[i],p[(i+)%n])) ans++;
}
printf("%d\n",ans);
} int main()
{
int i,t,n;
double x,y;
vector<Point> p;
scanf("%d",&t);
while(t--)
{
p.clear();
scanf("%d",&n);
for(i=;i<n;i++)
{
scanf("%lf%lf",&x,&y);p.push_back(Point(x,y));
}
Point center=getcenter(p);
p=ConvexHull(p);
solve(p,center);
}
return ;
}

hdu 3685 多边形重心+凸包的更多相关文章

  1. hdu 1115(多边形重心问题)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  2. HDU 3685 Rotational Painting(多边形质心+凸包)(2010 Asia Hangzhou Regional Contest)

    Problem Description Josh Lyman is a gifted painter. One of his great works is a glass painting. He c ...

  3. hdu 3685 10 杭州 现场 F - Rotational Painting 重心 计算几何 难度:1

    F - Rotational Painting Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & % ...

  4. hdu 1115:Lifting the Stone(计算几何,求多边形重心。 过年好!)

    Lifting the Stone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  5. hdu 1115(计算多边形重心)

    题意:已知一多边形没有边相交,质量分布均匀.顺序给出多边形的顶点坐标,求其重心. 分析: 求多边形重心的题目大致有这么几种: 1,质量集中在顶点上.n个顶点坐标为(xi,yi),质量为mi,则重心 X ...

  6. HDU 1115(求质量均匀分布的多边形重心 物理)

    题意是给一个 n 边形,给出沿逆时针方向分布的各顶点的坐标,求出 n 边形的重心. 求多边形重心的情况大致上有三种: 一.多边形的质量都分布在各顶点上,像是用轻杆连接成的多边形框,各顶点的坐标为Xi, ...

  7. UVALive 4426 Blast the Enemy! --求多边形重心

    题意:求一个不规则简单多边形的重心. 解法:多边形的重心就是所有三角形的重心对面积的加权平均数. 关于求多边形重心的文章: 求多边形重心 用叉积搞一搞就行了. 代码: #include <ios ...

  8. HDOJ(1115)多边形重心

    Lifting the Stone http://acm.hdu.edu.cn/showproblem.php?pid=1115 题目描述:输入n个顶点(整数),求它们围成的多边形的重心. 算法:以一 ...

  9. HDU 2440、HDU 3694多边形费马点

    1.http://acm.hdu.edu.cn/showproblem.php?pid=2440   按照题意知道是一个简单的多边形即凸包,但给出的点并没有按照顺序的,所以需要自己先求出凸包,然后在用 ...

随机推荐

  1. SVN:The working copy is locked due to a previous error (一)

    使用 Cornerstone  时,碰到如题问题,SVN无法Update.Commit等操作. 解决办法:Working Copies ⟹ '右键' ⟹ Clean 即可解决! 尊重作者劳动成果,转载 ...

  2. 扫雷游戏 NOIP(入门)

    题目描述: 扫雷游戏是一款十分经典的单机小游戏.它的精髓在于,通过已翻开格子所提示的周围格地雷数,来判断未翻开格子里是否是地雷. 现在给出n行m列的雷区中的地雷分布,要求计算出每个非地雷格的周围格地雷 ...

  3. 【最大权闭合子图 最小割】bzoj1497: [NOI2006]最大获利

    最大权闭合子图的模型:今天才发现dinic板子是一直挂的…… Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战.THU集团旗下的CS&T通讯公司在 ...

  4. [提供可行性脚本] RHEL 7/CentOS 7/Fedora28 重命名网卡名称

    实验说明: 在许多自动化任务中,脚本往往是通过读取配置文件来获取信息的,红帽系的系统自升级之后(CentOS7/RHEL7),网卡命名采用“一致性网络设备接口”的命名方法,导致不同设备的不同网卡名称各 ...

  5. How to Install Zabbix Server on Centos6.7

    Prerequisite Environment First you must use your Subscription Manager to enable SCL: [root@fileserve ...

  6. python入门:最基本的用户登录

    #! usr/bin/env python # -*- coding: utf-8 -*- #最基本的用户登录 import getpass usre = input("username:& ...

  7. 第7课 Thinkphp 5 模板输出变量使用函数 Thinkphp5商城第四季

    目录 1. 手册地址: 2. 如果前面输出的变量在后面定义的函数的第一个参数,则可以直接使用 3. 还可以支持多个函数过滤,多个函数之间用"|"分割即可,例如: 4. 变量输出使用 ...

  8. LeetCode(238) Product of Array Except Self

    题目 Given an array of n integers where n > 1, nums, return an array output such that output[i] is ...

  9. CodeForces - 485D Maximum Value (数学)

    题意: n个数,求出这些数中满足 ai >= aj 的 ai % aj 的最大值. 排序去重,然后对于每一个a[i], 如果找到a[i] 的一个倍数 k*a[i] (k > 1)的位置,那 ...

  10. 【LeetCode】Linked List Cycle II(环形链表 II)

    这是LeetCode里的第142道题. 题目要求: 给定一个链表,返回链表开始入环的第一个节点. 如果链表无环,则返回 null. 说明:不允许修改给定的链表. 进阶:你是否可以不用额外空间解决此题? ...