Consider an n \times mn×m matrix of ones and zeros. For example, this 4 \times 44×4:

\displaystyle \begin{matrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{matrix}1000​1111​1111​1110​

We can compute even parity for each row, and each column. In this case, the row parities are [0, 1, 1, 0][0,1,1,0] and the column parities are [1, 0, 0, 1][1,0,0,1] (the parity is 11 if there is an odd number of 11s in the row or column, 00 if the number of 11s is even). Note that the top row is row 11, the bottom row is row nn, the leftmost column is column 11, and the rightmost column is column mm.

Suppose we lost the original matrix, and only have the row and column parities. Can we recover the original matrix? Unfortunately, we cannot uniquely recover the original matrix, but with some constraints, we can uniquely recover a matrix that fits the bill. Firstly, the recovered matrix must contain as many 11’s as possible. Secondly, of all possible recovered matrices with the most 11’s, use the one which has the smallest binary value when you start with row 11, concatenate row 22 to the end of row 11, then append row 33, row 44, and so on.

Input Format

Each input will consist of a single test case.

Note that your program may be run multiple times on different inputs.

Each test case will consist of exactly two lines.

The first line will contain a string R (1 \le |R| \le 50)R(1≤∣R∣≤50), consisting only of the characters 00 and 11. These are the row parities, in order.

The second line will contain a string C (1 \le |C| \le 50)C(1≤∣C∣≤50), consisting only of the characters 00 and 11. These are the column parities, in order.

Output Format

If it is possible to recover the original matrix with the given constraints, then output the matrix as |R|∣R∣ lines of exactly |C|∣C∣ characters, consisting only of 00’s and 11’s. If it is not possible to recover the original matrix, output -1−1.

样例输入1

0110
1001

样例输出1

1111
0111
1110
1111

样例输入2

0
1

样例输出2

-1

样例输入3

11
0110

样例输出3

1011
1101

题目来源

The North American Invitational Programming Contest 2018

 #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <string>
#include <deque>
using namespace std;
#define ll long long
#define N 60
#define gep(i,a,b) for(int i=a;i<=b;i++)
#define gepp(i,a,b) for(int i=a;i>=b;i--)
#define gep1(i,a,b) for(ll i=a;i<=b;i++)
#define gepp1(i,a,b) for(ll i=a;i>=b;i--)
#define mem(a,b) memset(a,b,sizeof(a))
char s1[N],s2[N];
int a[N],b[N];
char s[N][N];
int main()
{
scanf("%s%s",s1,s2);
int l=strlen(s1);
int r=strlen(s2);
int x=l%,y=r%;
int cnt1=,cnt2=;
gep(i,,l-){
int ii=s1[i]-'';
if(ii%!=y){
a[cnt1++]=i;
}
}
gep(i,,r-){
int ii=s2[i]-'';
if(ii%!=x){
b[cnt2++]=i;
}
}
if((cnt1+cnt2)&){//必须为偶数
printf("-1\n");
return ;
}
while(cnt1<cnt2) a[cnt1++]=;
while(cnt2<cnt1) b[cnt2++]=;
sort(a,a+cnt1);sort(b,b+cnt2);//贪心
gep(i,,l-){
gep(j,,r-){
s[i][j]='';
}
}
gep(i,,cnt1-){
s[a[i]][b[i]]='';//这些点必须为0
}
gep(i,,l-){
printf("%s\n",s[i]);
}
return ;
}

The North American Invitational Programming Contest 2018 H. Recovery的更多相关文章

  1. The North American Invitational Programming Contest 2018 D. Missing Gnomes

    A family of nn gnomes likes to line up for a group picture. Each gnome can be uniquely identified by ...

  2. The North American Invitational Programming Contest 2018 E. Prefix Free Code

    Consider nn initial strings of lower case letters, where no initial string is a prefix of any other ...

  3. North American Invitational Programming Contest 2018

    A. Cut it Out! 枚举第一刀,那么之后每切一刀都会将原问题划分成两个子问题. 考虑DP,设$f[l][r]$表示$l$点顺时针一直到$r$点还未切割的最小代价,预处理出每条边的代价转移即可 ...

  4. The North American Invitational Programming Contest 2017 题目

    NAIPC 2017 Yin and Yang Stones 75.39% 1000ms 262144K   A mysterious circular arrangement of black st ...

  5. North American Invitational Programming Contest (NAIPC) 2017

    (待补) A. Pieces of Parentheses 将括号处理完成后排序,方式参加下面的博客.然后做一遍背包即可. 2018 Multi-University Training Contest ...

  6. North American Invitational Programming Contest (NAIPC) 2016

    (待补) A. Fancy Antiques 爆搜. B. Alternative Bracket Notation C. Greetings! D. Programming Team 0/1分数规划 ...

  7. AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)

    原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html 题目 ...

  8. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syria, Lattakia, Tishreen University, April, 30, 2018

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syr ...

  9. 2014 ACM-ICPC Beijing Invitational Programming Contest

    点击打开链接 Happy Reversal Time Limit: 1000ms Memory Limit: 65536KB 64-bit integer IO format: %lld      J ...

随机推荐

  1. Codeforces Round #532(Div. 2) A.Roman and Browser

    链接:https://codeforces.com/contest/1100/problem/A 题意: 给定n,k. 给定一串由正负1组成的数. 任选b,c = b + i*k(i为任意整数).将c ...

  2. KEIL_RTX资源介绍

    调度方法:时间片轮转. 参考文档:Keil参考手册和rtl.h(任务的每个.c文件都应包含此头文件)头文件这两个文档 1)事件管理:让一个进程等待一个事件,这个事件可以由其它进程和中断触发(只能在中断 ...

  3. gulp-htmlone的BUG弃坑

    之前用项目用gulp-htmlone做最后的js和css内联打包出现各种问题 这次居然遇到打包后的css斜杠变反斜杠的问题 如下:/src/common/images/i_banner.jpg会被改成 ...

  4. CF1062D Fun with Integers

    思路: 找规律. 实现: #include <bits/stdc++.h> using namespace std; typedef long long ll; int main() { ...

  5. plpgsql 数组、JSON相关

    Function Return Type Description Example Result array_append(anyarray,anyelement) anyarray append an ...

  6. 自定义Mega菜单的巧妙实现

    查看了<云制造>官网源码,为其mega菜单的巧妙实现打call. 其另辟蹊径,采取父级主控分支的方法,仅对父级“增加/删除”控制标识,从而控制子层显示. <!DOCTYPE html ...

  7. 关于svn提交的时候强制写注释

    本文固定链接: http://www.linuxyan.com/linux-service/229.html 转载请注明: admin 2012年09月29日 于 ㄨ销声匿迹.Linux 发表 在sv ...

  8. 求矩阵的n次方 c语言实现

    矩阵的n次方,比较容易理解的想法是递归. 思路是这样的,把n分成两部分,当n是偶数的时候,即为左右两边的乘积,如果n是奇数,即为左右两边的乘积再乘a ) matrixn())^*a else matr ...

  9. 学习python报错处理

    1.如图所示 原因是因为没有安装火狐浏览器驱动. 解决办法:1.下载火狐浏览器驱动https://github.com/mozilla/geckodriver/releases 2.安装包解压后安装在 ...

  10. cannot load such file -- bundler/setup解决

    sudo gem install bundler bundle update celluloid