长度为 n≤1000 的数列 ai,其中最长上升子序列的长度为 s。至少删去多少数使得最长上升子序列的长度小于 s。


其实这题和那个求有多少不重叠LIS是一样答案的.

先放个图。

图丑别说我。

原网络的意思是从s到t是一条lis,那我们就对这个图进行破坏,求出一个最小割使它不连通即可。这里有几个问题。为什么是最小割?可以看出,删数操作就相当于把那个拆点间的边删掉,并且这种删法是最优的(看图想一想),比删入度,出度价值更少。那么就可以把删数想象为求最小割即最大流啦。最小割去掉后的数列不会再出现一个长s的lis吗?不会的,如果有,那删之前应该也是存在的,那就应该被删掉,与现在又出现矛盾,故不会出现。

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;char c;while(!isdigit(c=getchar()))if(isalpha(c))return x=(int)c;
while(isdigit(c))x=(x<<)+(x<<)+(c^),c=getchar();return x;
}
const int N=+,M=+,INF=0x3f3f3f3f;
int w[M<<],v[M<<],Next[M<<],Head[N<<],cur[N<<],dis[N<<],tot,s,t,n;
inline void Addedge(int x,int y,int z){
v[++tot]=y,Next[tot]=Head[x],Head[x]=tot,w[tot]=z;
v[++tot]=x,Next[tot]=Head[y],Head[y]=tot,w[tot]=;
}
#define y v[j]
inline char bfs(){
queue<int> q;q.push(s),memset(dis,,sizeof dis),dis[s]=;
for(register int i=;i<=(n<<)+;++i)cur[i]=Head[i];
while(!q.empty()){
int x=q.front();q.pop();
for(register int j=Head[x];j;j=Next[j])if(w[j]&&!dis[y]){
dis[y]=dis[x]+,q.push(y);
if(y==t)return ;
}
}
return ;
}
int dinic(int x,int flow){
if(!flow||x==t)return flow;
int rest=flow,k;
for(register int j=cur[x];j&&rest;cur[x]=j,j=Next[j])if(w[j]&&dis[y]==dis[x]+){
if(!(k=dinic(y,_min(rest,w[j]))))dis[y]=;
rest-=k,w[j]-=k,w[j^]+=k;
}
return flow-rest;
}
#undef y
int a[N],f[N],ans,maxflow,T; int main(){//freopen("P2766.in","r",stdin);//freopen("P2766.txt","w",stdout);
read(T);while(T--){
tot=;read(n);s=(n<<)+,t=s+,ans=maxflow=;
memset(Head,,sizeof Head);
for(register int i=;i<=n;++i){
read(a[i]);f[i]=;
for(register int j=;j<i;++j)if(a[j]<a[i])MAX(f[i],f[j]+);
for(register int j=;j<i;++j)if(a[j]<a[i]&&f[j]+==f[i])Addedge(j+n,i,);
MAX(ans,f[i]);Addedge(i,i+n,);if(f[i]==)Addedge(s,i,);
}
for(register int i=;i<=n;++i)if(f[i]==ans)Addedge(i+n,t,);
while(bfs())maxflow+=dinic(s,INF);
printf("%d\n",maxflow);
}
return ;
}

hdu3739 Anti LIS[最小割]的更多相关文章

  1. BZOJ.3532.[SDOI2014]LIS(最小割ISAP 退流)

    BZOJ 洛谷 \(LIS\)..经典模型? 令\(f_i\)表示以\(i\)结尾的\(LIS\)长度. 如果\(f_i=1\),连边\((S,i,INF)\):如果\(f_i=\max\limits ...

  2. 【BZOJ-3532】Lis 最小割 + 退流

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 704  Solved: 264[Submit][Status] ...

  3. 3532: [Sdoi2014]Lis 最小字典序最小割

    3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 865  Solved: 311[Submit][Status] ...

  4. [bzoj3532][Sdoi2014]Lis——拆点最小割+字典序+退流

    题目大意 给定序列A,序列中的每一项Ai有删除代价Bi和附加属性Ci.请删除若 干项,使得4的最长上升子序列长度减少至少1,且付出的代价之和最小,并输出方案. 如果有多种方案,请输出将删去项的附加属性 ...

  5. P3308-[SDOI2014]LIS【最小割】

    正题 题目链接:https://www.luogu.com.cn/problem/P3308 题目大意 三个\(n\)个数字的序列\(A,B,C\).要求删除其中某些位置\(i\)使得\(A\)的最长 ...

  6. P3308 [SDOI2014]LIS(最小割+退流)

    传送门 设\(f[i]\)为以\(i\)结尾的最长上升子序列.可以考虑建这样一张图,对于所有的\(i<j,f[j]=f[i+1]\)连边\((i,j)\),\(f[i]=1\)的话连边\((S, ...

  7. BZOJ 1391: [Ceoi2008]order [最小割]

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1509  Solved: 460[Submit][Statu ...

  8. BZOJ-2127-happiness(最小割)

    2127: happiness(题解) Time Limit: 51 Sec  Memory Limit: 259 MBSubmit: 1806  Solved: 875 Description 高一 ...

  9. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

随机推荐

  1. 33:字符统计SumOfCharactors

    题目描述:如果统计的个数相同,则按照ASII码由小到大排序输出 .如果有其他字符,则对这些字符不用进行统计. 实现以下接口: 输入一个字符串,对字符中的各个英文字符,数字,空格进行统计(可反复调用) ...

  2. Lua学习四----------Lua变量

    © 版权声明:本文为博主原创文章,转载请注明出处 1.Lua变量 - 变量在使用前,必须在代码中进行声明,即创建该变量 - 编译程序执行代码之前编译器需要知道如何给语句变量开辟存储区,用于存储变量的值 ...

  3. Django之中间件-CSRF

    CSRF a.CSRF原理 post提交时需要提交csrf_token ,缺少则不通过 在form表单中加入: {% csrf_token %} b.无CSRF时存在隐患 防护其他人通过别的链接pos ...

  4. chessy 提高篇系列 阅读笔记

    java提高篇(一)—–理解java的三大特性之封装 封装的好处, 汇聚属性和方法 减少修改对 其他处的影响 控制get和set方法. java提高篇(二)—–理解java的三大特性之继承 继承的好处 ...

  5. Maven 编译

    pom.xml 添加插件 <build> <plugins> <plugin> <groupId>org.apache.maven.plugins< ...

  6. Touch ID和Passcode框架,Apple Watch风格的应用布局

    本文转载至 http://www.cocoachina.com/ios/20141031/10110.html 水平滚动条(artwalk) 测试环境:Xcode 6.0,iOS 8.0     VE ...

  7. python 基础 4.1 函数的参数

    #/usr/bin/python #coding=utf-8 #@Time   :2017/10/24 9:09 #@Auther :liuzhenchuan #@File   :函数的参数.py # ...

  8. spirng boot资料

    这里有个srping boot 各种整合的资料 https://blog.csdn.net/Winter_chen001/article/details/80537829 SpringBoot入门总结 ...

  9. HUD3689 Infinite monkey theorem

    Infinite monkey theorem Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/ ...

  10. 九度OJ 1027:欧拉回路 (欧拉回路)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:2989 解决:1501 题目描述:     欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路.现给定一个图,问是 ...