CodeForces - 1000D:Yet Another Problem On a Subsequence (DP+组合数)
The sequence of integers a1,a2,…,aka1,a2,…,ak is called a good array if a1=k−1a1=k−1 and a1>0a1>0. For example, the sequences [3,−1,44,0],[1,−99][3,−1,44,0],[1,−99] are good arrays, and the sequences [3,7,8],[2,5,4,1],[0][3,7,8],[2,5,4,1],[0] — are not.
A sequence of integers is called good if it can be divided into a positive number of good arrays. Each good array should be a subsegment of sequence and each element of the sequence should belong to exactly one array. For example, the sequences [2,−3,0,1,4][2,−3,0,1,4], [1,2,3,−3,−9,4][1,2,3,−3,−9,4] are good, and the sequences [2,−3,0,1][2,−3,0,1], [1,2,3,−3−9,4,1][1,2,3,−3−9,4,1] — are not.
For a given sequence of numbers, count the number of its subsequences that are good sequences, and print the number of such subsequences modulo 998244353.
Input
The first line contains the number n (1≤n≤103)n (1≤n≤103) — the length of the initial sequence. The following line contains nn integers a1,a2,…,an (−109≤ai≤109)a1,a2,…,an (−109≤ai≤109) — the sequence itself.
Output
In the single line output one integer — the number of subsequences of the original sequence that are good sequences, taken modulo 998244353.
Examples
3
2 1 1
2
4
1 1 1 1
7
Note
In the first test case, two good subsequences — [a1,a2,a3][a1,a2,a3] and [a2,a3][a2,a3].
In the second test case, seven good subsequences — [a1,a2,a3,a4],[a1,a2],[a1,a3],[a1,a4],[a2,a3],[a2,a4][a1,a2,a3,a4],[a1,a2],[a1,a3],[a1,a4],[a2,a3],[a2,a4] and [a3,a4][a3,a4].
题意:给定序列,问有多少子序列(不一定连续),满足可以划分为若干个组,给个组的第一个等于区间长度-1;
思路:因为关键在于区间的第一个,我们从后向前考虑,dp[i]表示以i为开头,满足题意的数量;sum[i]表示i后面可能的情况数量。
对于i:还要取a[i]个,我们假设最后一个数在j位置,那么dp[i]+=C(j-i-1,a[i]-1)*(1+sum[j+1]);
复杂度为O(N^2);
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int Mod=;
const int maxn=;
int a[maxn],dp[maxn],sum[maxn];
int c[maxn][maxn],ans;
int main()
{
int N,i,j;
scanf("%d",&N);
for(i=;i<=N;i++) c[i][]=,c[i][]=i,c[i][i]=;
for(i=;i<=N;i++)
for(j=;j<=N;j++)
c[i][j]=(c[i-][j]+c[i-][j-])%Mod;
for(i=;i<=N;i++) scanf("%d",&a[i]);
for(i=N;i>=;i--){
if(a[i]>&&i+a[i]<=N){
for(j=i+a[i];j<=N;j++){
(dp[i]+=(ll)c[j-i-][a[i]-]*(+sum[j+])%Mod)%=Mod;
}
}
sum[i]=(sum[i+]+dp[i])%Mod;
}
printf("%d\n",sum[]);
return ;
}
CodeForces - 1000D:Yet Another Problem On a Subsequence (DP+组合数)的更多相关文章
- CodeForces - 1000D Yet Another Problem On a Subsequence
题面在这里! 好智障的一个dp啊,一段开头的数字相当于下面要跟多少个数,直接滚动数组dp就行了... #include<bits/stdc++.h> #define ll long lon ...
- Codeforces 713C Sonya and Problem Wihtout a Legend DP
C. Sonya and Problem Wihtout a Legend time limit per test 5 seconds memory limit per test 256 megaby ...
- cf1000D Yet Another Problem On a Subsequence (dp)
设f[i]是以i为开头的好子序列的个数 那么有$f[i]=\sum\limits_{j=i+a[i]+1}^{N+1}{f[j]*C_{j-i-1}^{a[i]}}$(设f[N+1]=1)就是以i为开 ...
- Codeforces Round #479 (Div. 3) F. Consecutive Subsequence (DP)
题意:给你一个长度为\(n\)的序列,求一个最长的\({x,x+1,x+2,.....,x+k-1}\)的序列,输出它的长度以及每个数在原序列的位置. 题解:因为这题有个限定条件,最长序列是公差为\( ...
- Codeforces Round #174 (Div. 1) B. Cow Program(dp + 记忆化)
题目链接:http://codeforces.com/contest/283/problem/B 思路: dp[now][flag]表示现在在位置now,flag表示是接下来要做的步骤,然后根据题意记 ...
- D - Yet Another Problem On a Subsequence CodeForces - 1000D (DP,组合数学)
D - Yet Another Problem On a Subsequence CodeForces - 1000D The sequence of integers a1,a2,-,aka1,a2 ...
- CodeForces 163A Substring and Subsequence dp
A. Substring and Subsequence 题目连接: http://codeforces.com/contest/163/problem/A Description One day P ...
- Educational Codeforces Round 9 D. Longest Subsequence dp
D. Longest Subsequence 题目连接: http://www.codeforces.com/contest/632/problem/D Description You are giv ...
- 【codeforces 750E】New Year and Old Subsequence
time limit per test3 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
- 【codeforces 766A】Mahmoud and Longest Uncommon Subsequence
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- ASP.NET MVC深入浅出系列(持续更新) ORM系列之Entity FrameWork详解(持续更新) 第十六节:语法总结(3)(C#6.0和C#7.0新语法) 第三节:深度剖析各类数据结构(Array、List、Queue、Stack)及线程安全问题和yeild关键字 各种通讯连接方式 设计模式篇 第十二节: 总结Quartz.Net几种部署模式(IIS、Exe、服务部署【借
ASP.NET MVC深入浅出系列(持续更新) 一. ASP.NET体系 从事.Net开发以来,最先接触的Web开发框架是Asp.Net WebForm,该框架高度封装,为了隐藏Http的无状态模 ...
- intel电源管理技术中I2C和SVID
1.I2C总线架构图: 2.Gemini Lake平台所支持的PMIC 是哪种类型? POR 是SVID PMIC, i2c PMIC 会影响性能. 3.SerialVID, 总共有三个信号线 时钟( ...
- HDU 1874 畅通project续 最短路径入门(dijkstra)
Problem Description 某省自从实行了非常多年的畅通project计划后,最终修建了非常多路.只是路多了也不好,每次要从一个城镇到还有一个城镇时,都有很多种道路方案能够选择,而某些方案 ...
- maven项目The superclass "javax.servlet.http.HttpServlet" was not found on the Java Build Path
用Eclipse创建了一个maven web程序,使用tomcat8.5作为服务器,可以正常启动,但是却报如下错误 The superclass "javax.servlet.http.Ht ...
- 目标检测之基础hessian matrix ---海森矩阵
就是海赛(海色)矩阵,在网上搜就有. 在数学中,海色矩阵是一个自变量为向量的实值函数的二阶偏导数组成的方块矩阵, Hessian矩阵是多维变量函数的二阶偏导数矩阵,H(i,j)=d^2(f)/(d(x ...
- insert小细节,大问题
今天现场报流程无法查看,已查看流程表中没有数据了.昨天有运行过删除垃圾数据的脚步.大致过程是: create table bak_test a as select * from test; creat ...
- Swift———a Glance(极客学院)笔记
http://www.swiftv.cn/course/hw4sysi7 本课程很短,加起来一个小时,适合作为一个快速了解. 两本书: apple官方<The Swift Programmi ...
- Quart 2D 绘制图形简单总结(转)
0 CGContextRef context = UIGraphicsGetCurrentContext(); 设置上下文 1 CGContextMoveToPoint 开始画线 2 CGConte ...
- antd引入普通html使用,将ant Design本地化
一直想着能本地化antd的,不用npm以及dva那么复杂的配置环境来开发,并且本地化以后对以后链接flask的模板渲染机制也能很好的结合.下面是具体的实现方法: 1.将react的相关链接引入: &l ...
- Python中的注解“@” 、Java 注解
https://blog.csdn.net/u013474436/article/details/75675113 https://blog.csdn.net/briblue/article/deta ...