BZOJ_1025_[SCOI2009]游戏_DP+置换

Description

  windy学会了一种游戏。对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应。最开始windy把数字按
顺序1,2,3,……,N写一排在纸上。然后再在这一排下面写上它们对应的数字。然后又在新的一排下面写上它们
对应的数字。如此反复,直到序列再次变为1,2,3,……,N。
如: 1 2 3 4 5 6 对应的关系为 1->2 2->3 3->1 4->5 5->4 6->6
windy的操作如下
1 2 3 4 5 6
2 3 1 5 4 6
3 1 2 4 5 6
1 2 3 5 4 6
2 3 1 4 5 6
3 1 2 5 4 6
1 2 3 4 5 6
这时,我们就有若干排1到N的排列,上例中有7排。现在windy想知道,对于所有可能的对应关系,有多少种可
能的排数。

Input

  包含一个整数N,1 <= N <= 1000

Output

  包含一个整数,可能的排数。

Sample Input

【输入样例一】
3
【输入样例二】
10

Sample Output

【输出样例一】
3
【输出样例二】
16

题面可以简化为n个数,任意分段,每段大小的lcm有多少种情况。
考虑求哪些数是可以作为lcm
因为可以1个1个放,n的答案包括1~n-1的所有答案。
把lcm表示成pi^ki这种形式,可以证明对于每个数,只取pi^ki能够使得总和最小(废话,因为每个数最少取这么多)
那我们就只考虑每个数取pi^ki这种情况。
设f[i][j]表示考虑前i个质数,当前所有pi^ki的和是j的方案数。
转移就很简单了。
 
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
#define N 1050
typedef long long ll;
int prime[N],cnt,n,vis[N];
ll f[N][N],ans;
int main() {
scanf("%d",&n);
int i,j,k;
for(i=2;i<=n;i++) {
if(!vis[i]) prime[++cnt]=i;
for(j=1;j<=cnt&&i*prime[j]<=n;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
f[0][0]=1;
for(i=1;i<=cnt;i++) {
for(j=0;j<=n;j++) f[i][j]=f[i-1][j];
for(j=prime[i];j<=n;j*=prime[i]) {
for(k=j;k<=n;k++) f[i][k]+=f[i-1][k-j];
}
}
for(i=0;i<=n;i++) ans+=f[cnt][i];
printf("%lld\n",ans);
}

BZOJ_1025_[SCOI2009]游戏_DP+置换+数学的更多相关文章

  1. SCOI2009游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1065  Solved: 673[Submit][Status] ...

  2. BZOJ 1025: [SCOI2009]游戏( 背包dp )

    显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...

  3. 【BZOJ1025】[SCOI2009]游戏(动态规划)

    [BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...

  4. BZOJ 1025 [SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1533  Solved: 964[Submit][Status][ ...

  5. bzoj千题计划116:bzoj1025: [SCOI2009]游戏

    http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...

  6. AC日记——[SCOI2009]游戏 bzoj 1025

    [SCOI2009]游戏 思路: 和为n的几个数最小公倍数有多少种. dp即可: 代码: #include <bits/stdc++.h> using namespace std; #de ...

  7. 【bzoj1025】[SCOI2009]游戏

    1025: [SCOI2009]游戏 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1987  Solved: 1289[Submit][Status] ...

  8. BZOJ_5359_[Lydsy1805月赛]寻宝游戏_DP

    BZOJ5359_[Lydsy1805月赛]寻宝游戏_DP Description begin.lydsy.com/JudgeOnline/upload/201805.pdf 我们需要找到一条权值最大 ...

  9. BZOJ_1915_[Usaco2010 Open]奶牛的跳格子游戏_DP+单调队列

    BZOJ_1915_[Usaco2010 Open]奶牛的跳格子游戏_DP+单调队列 Description 奶牛们正在回味童年,玩一个类似跳格子的游戏,在这个游戏里,奶牛们在草地上画了一行N个格子, ...

随机推荐

  1. 一步一步实现一个简单的OS(简单的让boot载入setup)

    这次直接写用boot载入setup模块. 文件系统就先不弄了,以后再说, 咱先整个转简单的载入器. 我把软盘引导改成硬盘了,由于硬盘的读扇区函数简单一些. 这里没有做硬盘的mbr区,我认为在如今我的这 ...

  2. netbeans xdebug

    xdebug配置 装了wamp后,xdebug默认就安装好了,为了能够用netbeans远程调试,配置文件里得加几句 [xdebug] xdebug.remote_enable = on xdebug ...

  3. Android中BaseAdapter使用基础点

    Android中要填充一些控件(如ListView)经常须要用到Adapter来实现,经常使用的有ArrayAdapter,SimpleAdapter, CursorAdapter,BaseAdapt ...

  4. 全命令行手写MapReduce并且打包运行

    主要要讲的有3个 java中的package是干啥的? 工作了好几年的都一定真正理解java里面的package关键字,这里在写MapReduce需要进行打包的时候突然发现命令行下打包运行居然不会了, ...

  5. oracle 推断字符是否为字母

    create or replace function ischar(chr varchar2) return varchar2 is   ischr varchar2(5); begin   sele ...

  6. Array容易被忽略的join

    var lists, items = '', i; lists = [{ Fruits:'苹果' },{ Fruits:'香蕉' },{ Fruits:'菠萝' }]; /*items += '< ...

  7. Spring Boot: 加密应用配置文件敏感信息

    Spring Boot: 加密应用配置文件敏感信息 背景 我们的应用之前使用的是Druid数据库连接池,由于需求我们迁移到HikariCP连接池,druid 数据源加密提供了多种方式: 可以在配置文件 ...

  8. Ubuntu/CentOS下编译Nginx最基本参数

    Ubuntu/CentOS下编译Nginx安装基本参数,做个记录: groupadd www useradd -g www www ./configure --user=www --group=www ...

  9. 有状态的EJB对象和无状态的EJB对象

    一,定义有状态Bean和无状态Bean 有状态Bean: @Stateful @Remote public class StatefulEjbBean implements StatefulEjb{ ...

  10. 如何理解API,API 是如何工作的

    大神博客:https://blog.csdn.net/cumtdeyurenjie/article/details/80211896