第7章 JavaScript内置对象

7-1 什么是对象

JavaScript 中的所有事物都是对象,如:字符串、数值、数组、函数等,每个对象带有属性方法

对象的属性:反映该对象某些特定的性质的,如:字符串的长度、图像的长宽等;

对象的方法:能够在对象上执行的动作。例如,表单的“提交”(Submit),时间的“获取”(getYear)等;

JavaScript 提供多个内建对象,比如 String、Date、Array 等等,使用对象前先定义,如下使用数组对象:

  var objectName =new Array();//使用new关键字定义对象
或者
  var objectName =[];

访问对象属性的语法:

objectName.propertyName

如使用 Array 对象的 length 属性来获得数组的长度:

var myarray=new Array(6);//定义数组对象
var myl=myarray.length;//访问数组长度length属性

以上代码执行后,myl的值将是:6

访问对象的方法:

objectName.methodName()

如使用string 对象的 toUpperCase() 方法来将文本转换为大写:

var mystr="Hello world!";//创建一个字符串
var request=mystr.toUpperCase(); //使用字符串对象方法

以上代码执行后,request的值是:HELLO WORLD!

 
 

任务

补充右边编辑器第5行,计算数组myarray的长度,并保存在变量mynum中,使代码实现获取数组长度并输出结果。

1.计算数组的长度,使用length属性。

2.var mynum=myarray.length;

7-2 Date 日期对象

日期对象可以储存任意一个日期,并且可以精确到毫秒数(1/1000 秒)。

定义一个时间对象 :

var Udate=new Date(); 

注意:使用关键字new,Date()的首字母必须大写。

使 Udate 成为日期对象,并且已有初始值:当前时间(当前电脑系统时间)

如果要自定义初始值,可以用以下方法:

var d = new Date(2012, 10, 1);  //2012年10月1日
var d = new Date('Oct 1, 2012'); //2012年10月1日

我们最好使用下面介绍的“方法”来严格定义时间。

访问方法语法:“<日期对象>.<方法>”

Date对象中处理时间和日期的常用方法:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAaMAAAFHCAIAAACDIrQ3AAAgAElEQVR4nO2dPY4cu5atJU2JNYJ22mqngILwCngTaDTKE1BAA10V/Sy5cgp41xGgAcg4t5xuObJ1LeFoADKUVkszOMo2GMHkz96bmwzGTzLXwoKQyWCQjKzkp73JyMwXRwiCoN71YusBQBAELS6QDoKg/nUi3R//+E8YhuGe/Pv4myDd3/77/8AwDPdhkA6G4f4N0sEw3L9BOhiG+zdIB8Nw/wbpYBju3yAdDMP9G6SDYbh/75R0xhhjzLZNtRpDw2uBG3rm3yU6vf5tdmWMMX/7L+lxta+ujDHm/89rpA/vlHR/q3rrkKdsQjozaWY78HKe//clS/w/vaqpRqQj61vSWV047xzphmHYknRGLU07csnM8SjPmjkAuKHJP2L138U/MWqtok1HKHNlOCl5l8LOxXQI7izphmF4fHzcS0zXBA0VnJIHUH169TDgtk4JVf3eiPRv//HPaeP5pkK0/fu7f/G5VpG9CqTb/MXf3HuJ6XzXsYA7q6i1+D03oxHuRLKpx0kbvuzdW/ibzvnvp5p0Y+UW63Fpg5wi6l3OG2+P63TVbzvyxPmt6Vsg31v6wVzCG25DL0S6qEHy7y6dlcteqyHoFumyMd0lvPH2SzoZGaWtzRzJ/B65dvw32SW84TZ0K9K1emeOrYWkIx8oG4nIKG9HXNobb7+kk0uEc//vv/4Tx8qidqrfxOS5ZGtR4nAJb7gN3ZZ00eP61q6M8fPfKtL5Tdn6V0mE6MPuAt94fZKu4sTolGpQ+jX95Zu0hcdEG77ml+C2pIv+oOmDfDthIDY/e+VIF+29XuYbb3ekI98oyndPWq3iHZxuRxS1FuFMngmX8z7bgzk2/a3qfRI9jhovGFWL7JVsKgJcCrvN/yJrumfSNXkrFw0jAqWMPOtLe8Nt4pRB8lNlaxw3y8bWmnRWKd2iO04u7Y23L9JVIyatk56ify/OGQZXrXomwEt4Pumix2ShqrUFYjpXgvvpnHdEOuH9UUq69H9dX8qRzDy94hLgdZz+LfZDOuL9VvIBiaJTLsp7IR335tDzZU4vRYMpPb2IkvDS5v46FS1E58aEyrZD7Uj4kCq9y8T/cAWni43v9kI6GIbh5QzSwTDcv0E6GIb7N0gHw3D/BulgGO7fIB0Mw/2bJR0Mw3BPpkl3+PUNhmG4D//xj/8H0sEw3LlBOhiG+zdIB8Nw/wbpYBju3yAdDMP9G6SDYbh/g3QwDPdvkA6+XL98+fLFixcvXrz48fPPVg0qm3Jdc3LtXKU/8xXKr0k+hg9nS7oPb4wx5vrd181HMstfnq7tm/XN81jy8d4WnP2l7co+gHzEpCzIAojDouuC6ys6kaufFsrM4ujmHkegvFj8OdINw7Aj0o0T/vXbL2SF5zvpaG0XE2V8FRAnM+bUX9/ehJirbAdWmISIUK2oAkkr4TE3njmkI0O/Hz//RKBnbUk3DMPj4+O5kO7Tu9cEIOZ3MZHu7qMtmUhk7j/MHjNfn2jcRqxzLxD2vRrpuPKUdPrsdWZMB9IdVojpiEDJn9s2Optk53ZyyoQe6xFAYeGEP6ebp0+lXcSk885Nsst4bOyYqd69q6BjRgGa7teIN3/rnKlJxJBRFVmnFemULRwWJt3jML6dfvzc/k+zqJddpwtn7ASjiXT26IikMJUTpnpw1ugxCHKFX56u7eOiLgjSTS2TYV1Un2uQ7H1coZPT85jmJ4N01U6Zks0fhfIDBUehpn90iZjO/29Vv073OIB0cxyvQ4Wki4Oa4ChPOmovglnwKu2CIp0LFSnohO3HDWp6Z/Ni4jJ9uoF0epMAKiWahnT+U/0mLNmI75l7r1xM9zg8Hia6gXTzPAYm9FSP0rqTRNKNoVAMiCnyChsp7UJJujQfp4NERe9hZEpckWN3lLGCdKVOUUUiqZqAZE1531YI6/xq82M6rNMddkC6ooUqYS+Cgl1hF4rsNXwqp8OK3pWke0y0+fvm7CzvdcrVNOVkiVxZs7p3WOAuE7c2d3o79R7QHXaQvdI7jDTpdDeXnM4t7CK/IxHBSyadpnd19grAzXRFTJfdkai+40Q4PS1fYkfCwu4SAOe86I5EtAVB70hEiaENc6ZbaoPVMTYOer7zgDX24u9IKLvg7jI59UjuKsRP+Qa93jPUpnYkQLo5Fpbn9DukmspkR3OYuND9dP463SV46c9IxDd/xIFMspgVB4BuwtM3l8iNlHVB3Tkcd+foZoy5ub+jg1b/RK732rtM4Dork8ompEvX44ruQamO6bJHsU63zqfBgmir1MxexBkbdw6vZv1+qP7TYEp+2fop/tKaAunS/4F9CdkrSOe8IunEFfqcO/mga2B8GmwVp+ip4BfZmlyNRJsPPiVS9dlrVI3clgXpFiGdn+uRyeCFG5/wh+F1fKbfZQLDMFxgkA6G4f4N0sEw3L9BOhiG+zdIB8Nw/2ZJB8Mw3JNp0h0hCIJ60d+5mG6j8UAQBLUXSAdBUP8C6SAI6l8gHQRB/QukgyCof4F0EAT1L5AOgqD+BdJBK8l97VrDBpU1s98H9/v376h+VCK0XH3umvJHJY+w4or2ecmRdkW6zw/GGHP7/vsWncf6/v7WGGPMw2fq6VajOfVvX6zdvFwn+QDyaULWzEruwodUhDN/7rmpSE74ObRKG5k57ZVQ1nyXJ/kKcBcoXMhM0glD/euvvypfpnI50g3DsDjpxsnJzc0WoEu7mIgQKg8sgXQOO34zrnAB9DCYzbye28knkaZaUYUXIUnJUIWb2HrSafCRbblCMpL0F6JsJ+3a/5erXBoj70GrxnTizBxn88yYiSddacNyTOf4GR1eJOYbOyOa5o9sqtVI50ue5w3Dn/SQ/pSsliCdX4G7duUh8rrOK3sti+mIQMmfbeFheyQ5JZyeNOhO0VMcL6m74EkXR0ohJXPZa5A9UqkkNULxdTh1MT6yrQVPmD8EddD9bjFx2loiseIf5apFFaI2yb7mLEUJhypIlx2AoEVJp+k9IppAc81/GxUahvGXt9vSsyamE4kQ5qDhQWFaUplrXP37+1v7uKiLpUjnpau3Sd4qjJB4JccjMdbt+SLo8lHd5qQTSjiiCaRL4ShnoMpVrXRlKjuHXfscR+pgVzrUowJ/HH1IjEbZq2a1TngF5GuxIlfrhmHYmnTxvA2fx/MyOMqTjgIdB4jCLsh1uofPRAeFpIvRdOpTHCF/LXS1HMqIl86n28qkc29f9/RYTjSunKwpsIZT0RJ7dknrSE3pnWSvHLaEy0wRmb3Y7P8KTq9evRJ2IXy67YB0RKTlTUV6/T9DOmaJjsnzCrtYLKbzS6W8NR4/dZwkr1+Z33WISRhlrJvEdCmqIuRx1ZTlfkl2mcmqKNtSpn7zs0W5TeFp9TqdvJ6owXrRUVfHAs6RLkWeTVrPjnRFi0rCXgQFu8IuFiWdKw5GI42QTlhbke4xEXPWsiJRJQRo80l3rNpt5Mq3JZ0mVqpepxMec/8BCCzLdu1KUsD5j93anFPzLY6Fslc62aIJoLu55HRuYRcbkE4YYTQ+Nen02evmuxDHqpguUlQhPdcVKlmjIV1pXlZEOmG9TBhnNqYTNgqK4jvhKEe66IqEaq4kCuVS2DUHnFPFjkQGASlZPj9IC1Es6NxpXi/+joSyC+Euk+hQM9IJI6T/X5BIl/mfgALhTkiXBRYJr7QdofKLcJ1OE30Ij0m1iumWIN2cscnkUua5pelwmrRGsNsV6Y7ELmE019g7KfwT/dmtzVwruhDvp6MupAXphBH6Xd4+PGRjuuq7TDaUQKjmpHsh3g1Hljcn3ZxMWa6gWafLNpVFf1SeEjmNfDngyv3KpFtU8+8cztwFoTp5b3e+7kzndecwmahyNbPy2yRbSGegZq6uTzrN4l0R6eqybHkwL6lbZ+RImXypueh1Na6lmk26WUHFrj7oumOdz6fBoiisjl9ka4Lk+Va6+pY2Lh/i4h1lI8o67iqqYzrhdSD/e5DjNf11Wb169cr2dU6kS1K+XYUUfeqMPuEPQTvUrr7LBIIgaBGBdBAE9S+QDoKg/gXSQRDUv0A6CIL6F0s6GIbhnkyT7vDrGwzDcB/+g4vpNh8ZDMNwK4N0MAz3b5AOhuH+DdLBMNy/QToYhvs3SAfDcP8G6WAY7t8gHXy5dl/Z9uPnn60aVDaV/da8qJ2rqytly2lN/bkd+3xJ9+GNMcZcv/u6+Ujq/eXp2n7J3JvnseTjvS047+vam30A+YhJ57/maztJarguuL6iE7n6aaF1BenSB5dsR7phGPZFunHOv377hazwfCcdreni07vXJuKOV7gAer6+vYm7U1w4XGUBImS1ogokrYTH3Hhk0sU/eDKJY6IPOMDOks7+AtkZkW4EUMSI2V3YONEYc/fx17cDFXO1v8D7D8mhcRhLdHqxXo10XHlKOn3kGHFKwBYXx4F0a8R0U0bmyZ/eNjqbZKd3csqIntFjNBQWekGZ1c3Tp+Iuppo3T59O4PNpSzUlDnga1f2HkZu2tfES6FBRoLz76d/N3zpnahIxZFRF1mlFOmULh8J1NyFjJc96nH5R+sfP7f80i3rxdTo6Q5xIZ4+OSAqzOWG2B2eNHqnkCr88XdvHhV2c0tWbJG8VmiIueYRdzF/bXUC91CNPI5SfDNJVO2WKJn8UQsIUjkJN/6gmpvPJZShFgZst4VDIlT8OIN1MxzgISRfHNcFRnnTUXgTHnYoupqZMiE65Kb5TuhqfurLX6NMNpNObBFAp0TSk85/qN2HJRlJnF91soUDG6JTH4fHw8/QYpJvnMTZh6BBmgieJpBujoZgRboktaGRWF0bKW+OOqCT9zXNyyZOpsJS4HAfuKGMF6UqdoopEUjUByZry6psQ1nEgSx8rq2Gdbg+kK1qrEvYiKNjVdHEK6wISSU1NXQexajPSPSba/H1zdpb3OuVqmnKyRK6sWd1zbkg6tzZ3ejv1HtAd9pG90puMNIZ0N5eczq3o4hdDOqGpCIJq0umzVwBupitiuuyORPUdJ8LpUblwc4mvLN0iOFrYXQLgnJfekYjmOb0j4S+9f7wf+TKlkMGqPBsKPd95wBp78Xck9F0cfjGkE5oKIRjem8Is58nIpnYkQLo5Fpbn9DukmspkRzOZGLlJ9uqv012CV/iMRLL5aKS7TEwaALo5T99cIjdS2IU1QzqhqdPSnjE393fZmK76LhO4zsqksgnp0vW4ontQmpAO99NFXvnTYEG0VWpmL+JcjTuHV7N+P1T/aTAlv2z9FH9pTZBuUa9LOnF/IOcePugaGJ8GW8Upeir4RbYmVyPR5oNPidTUWdJFeatJbjG5QC9OOj+ti5PEizc+4Q/D6/h8v8sEhmFYa5AOhuH+DdLBMNy/QToYhvs3SAfDcP9mSQfDMNyTadIdIQiCetHfuZhuo/FAEAS1F0gHQVD/AukgCOpfIB0EQf0LpIMgqH+BdBAE9S+QDoKg/gXSQRch95Vwv3//btWgsqnst9FF7Qj105rZEsgKpIO6kj/VfWSk81/zdZgkNVwXXF/RiVz9tDC9BLk8bQSk4+RINwwDSAf1IOW0z0KBrEDSSnjMjWch0mmu6zJlSTcMw+PjI0gH9aDVSMeVp6QrzV41pOMuE6QjhZgO6lYkYsioiqzTinTKFuRhK5NiZRcaDcPQEzGxTgd1KxkB2ZhIzhZlJtoKHEnnx3SufX2qWyqQDoJ2KhJApUTTx0pR+/pBVmTN6cCyMWmFfLqBdBC0a3E7kjNJpwnxhExTGdCRHZHlyv0QvexqPUgHQech5Y5kQ9JlKxflmKXrdNkrdW0K5LKY89UT5o4gHdSfKmI6EigafChZU0q6tjGdcjM6iuk6E0gH9SZhea4oy1OSTuap3NSuSHfsLmP1BdJBvUmZVDYhnZBRapoqukGkOssmh3ppAumgrqTfD83e/EGmsWlffmu2a/nGkU1IB4F0UD9K0VPBL7I1uRqJNh9885HK7UiQtM2O+QIF0kEQ1L/OgnSfH4wx5vb9960HMlff398aY4x5+KyodKplr7+LVwCCttEuSDfOZG4itwBd2sWEj7BhVyrTqLJTBemYKpmXCIIgUfsn3Tj1Z4JHIJ3fNlnYrtM86cZTiAr8EQiCcmpMOo8UFDHCw/ZIcko4l2nQuQwvicvUXfiFU+tUWdyZz+MTubw644lUp1J9rz0a+cL/B+6+9uwfCIIuUy1JF07FOH4JctDwoDCHqcw1rv79/a19XNRFQKKHz8eYaCGw7InxNZ3OuH3/nbtkIqZj6ougy0d1IB0EcWpHOo4C9nk8iYOjPOko0HEpYGEXU8ntdJatPz6P4BdvDog0d71ks1e6Posy4tXw6QbSQRCndqQjIq00pkokko5ZomPy3cIuXMl7y4+Hh1tjzMPnqRn6NJLfbUnH7zrEJIwyVpAOgjitTLqiFShhL4KCXWEXp5JwzexcSPeYiDkLgqC1s1c6M6MZpbu5JAWWsguvJLiDLSDdvrNXAA6ClGq4IxFNY2ZWh7d00Av9Xn167S5hh78joezCp4wfPUaNqHYkGHIlnea2LGS4UyAE6SBIo7Z3mcQ3f8QTk72jxD/RD6a0mWtFF1yym+JSc5dJcC612RrdZULXr73LBIIgWcvdOZy5ZUJ18uXdJos7hyFoCS1GulkRSDcfdC0XPg0GQQuoJemS3BXxR40u+RP+wvcabT00Wg2/DK7oV3VKm01/vif7vXhF3wi/f+3ic68QZMUR7UJI15As6VfaCV9yR3YE0kHQUuqJdNnv4Fw0hlLGaBXfPg/SQRekhTLK1UhX9FM1pe00HFJ1F81JR4I7/VLl3UIQpIOK5bjTHEArrNNxSVzdRN3tOl0KoFK4Z8lLfr37CqRzP01b1BdIB5Upgo7/dD6S9hbTRYv3RT8K0WRIQrm+NYekdJznSDqr0h9sBOmgMulJp4GC0JqmvFp1pFO203BI1V2QpEt/l2cJ0in/P/jrr79KL8qnG0gHLSslm5o0vlAvxwtbp1uZdKVDVcomrSAdtJKWJp0m9JuvfZKOu/a263QkmypuMWlIulevXslRnlubcyrtCKSDyoSYbuYppU1V5NTcWRzpuMryBm4r0r169coyzj0gFcV0pQLpoGK9YPZe5wdfGtKRvXD3/XNEOOt1urakI1834V6TrUh3LM9YfYF0UI1I3MwknXBuQ9KR939xN4WtRrrS9bJsv0UxnXBilnpN7qfLZq/zBdJBe5GSdLuSEIixK44MUvWk0+BVD6xozAJVOdJtcpdJqUA6aBcS8tb5SfFyajK3s7jU7BUIDWZ3G+TQlSRadfi2lUA6CIL6F0gHQVD/AukgCOpfIB0EQf0LpIMgqH+BdBAE9S+WdDAMwz2ZJt3h1zcYhuE+/AcX020+MhiG4VYG6WAY7t8gHQzD/Rukg2G4f4N0MAz3b5AOhuH+DdLBMNy/QTp4KbuvlmvYoLJm9oswf/z8U1M5quae+o/XdKt+z+iSW/ncSffhjTHGXL/7uvlICvzl6doYY4x58zyWfLy3BWd2IdY+gPw5Q9bMSu6C64ubouRcjSYtN4eFan5T3BiWsIwbJb+WuOT8fy3/szElHemGYdgj6UYEvH77hazwfCcdre1i4o6vdgz6+vYmxJzqSvdtkkRCtaIKEd3Ix9wUVZIuCwiyzo+ffy4d9RQFp02abXLJOwwALensD4ydHek+vXtNIGN+FxPp7j7akolN5v5DsysimrLx6dzL2cSrkY4r18MrBcTMAGcm6exQlSc2zF4XveTdkm6NmI4IlPzZbqOzSXa2J6dM6LEeARQWTvhzunn6VNpFTDrv3CTfjMeWnDuNx5J0HDMdIQpYdz/ou/k7RjaJFf8oVy2qELXJ9eUeZ9O6+UnfEqTjwsyK4ZX2u+gltyWd+1nrOW2utE4XzuFp8k+ks0dHJIXJnTD5g7NGj2GRK/zydG0fF3VBkG5qmQzrgvoRE8O+xhU6ORmP2X3yWZBOKOGIJpAuhSNX0w+OqpM+PXHmr9Mplws1w1P+FFkplaoveYmYbhiG3ZMuXpkKSReHOcFRnnTUXgSzBFbaBUU6FypSGAraDxqfNh/CiI/NgomL8um2Q9KRAColmoZ0ZPtK6yM+edq3jemypFuIX80vWTvO8k0Jn27nQLoxVKFBEyWVJ4mkGwkSI2OKvMJGSrtQki7Nx4PAzdx9nM5yMSYVhxLjd6SOMtYdks46RRWJpGoCkjXlOV+0EanhCBfgLEc6sr4SYXJevPQlN4npbNLaH+mKlq6EvQgKdoVdKLLX8GkUS7qnT/GqXBHpHhO1/KM0NYkqmVNF5WRJdHT+vSPCWQc+wBEYKruIdMooUlNt6UtWEfnVyxdilOfW5pxmonM/2Su950iTTndzyencwi7yOxIROrkLNEzL6ux154BzTlH1IhfTRYoqpOfKFYQ5H1lJCuWJMlBk9hURJwq1SJRo6LboJcvDO1V49dIyzj0gHcV0M73OjkS0BUHvSESJoQ18onUuvz4RGT3feVgJMseiLri7TE49kvsMPkm9fDnAq8xoakfijEiXBRYJr7QdoXLaETepuAlZtBzG5XHu6BzSHUQARXU0i3r6CgtdcvalHst1pDvMzlh9r/YZifjmjzi0SZbSqPjo7uMv7uYSuZGyLqg7h+PuHN2MMTf3d0nM6JJo8s6Y4rtMdm6BUM1J90JMWsly/Wpa0QJTKX24Rjggvgx3kwXKaLpusqZWmggLsJOz1+be5NNg8Tp9kZm9iL2ZvSulvzuHyUSVq5mV3ybXl9+a2/tTBhfVpCP3HOvWvyrMXaNASWXvrS550d2J+d6CdOL+QM7n8UHXKeKjxtnXp8FS9FTwi2xNrpbWdNNe3liMEjF9TU0yqORphYvIFQ2GPNrwkjUrki+2/ujrSqTzcz0yGezL4eci+Fejj0/4w/D+fe7fZQLDMJw3SAfDcP8G6WAY7t8gHQzD/Rukg2G4f4N0MAz3b5Z0MAzDPZkm3RGCIKgX/Z2L6TYaDwRBUHuBdBAE9S+QDoKg/gXSQRDUv0A6CIL6F0gHQVD/AukgCOpfIB20jdyXPrZq8OXLl79//1bWlL+Hkmvn6upK2cX8s1pJ/7JoziLL67pYWedCus8Pxhhz+/771gNZWN/f39rv5Hz4PJbYKz/fa/dZ5tOErJkV2YWbaf6Ui3DmT0WufloY6WJJJ78450W6YRi2JN04n7np3AJ0aRcTRBxVTqTZhitT796Ajsfsi7N7OULJEVw2viMrkLQSHh8XIN3V1ZX7Nu20wkKkU/JFiM6EGDZ9xcjI11Y7I9LZX1bcLelGAETzf34XeyPdOB7iOvkj56DVSMeVa+btnOzVldsHPvh81cVWShgJLcivj6MV91Jk/884I9IdG8Z0Ez48+RM0PGyPJKeEM5oGncvzTJzdqbtQki7siToyNRDC9HR0fBSVRy2GlehXlTrofuRc/LPsQnJC6gORrNOKdMoWnCKQHRPkceXR0VJlYa25KC5WrUtIOyDdsck6HTfV/aPkQWEmU5lrXP37+1v7uKgLDemCs+IL0pEuQBo7chF0+ajuXEgnlHBEE0jnZnsU+6Rzz0dDaUxHgox8vA7pNHyRM3SuAte1HO41Id0wDIvisinpZBDEUzk4ypOOAh2znlXaBRF+0nFWsj8gopw9WRh5HmXE6+DTbZ+kI4OyUqJpSGdVN/Hk+hzdjiHg3DtHZmK1sjEad0VCKBeRXRMFt43pfLqdFemIeCWNqRKJpGOW6Jh8t7CLfEyXnEPCu4B0fKae23SJSRhlrPsknVWKqgh5XDVluRM5jclITQjrSJaRT4/ewpwAuPmkK9o54dAWldRtyzQknd0c6Jh0RetQwl4EhYzCLrYgHTPyQtI9JmLO2oVIVJEBGnmognTH3ITXzGSOa2nJoqRTbihzhU1IV7r3ml1GtJjztfRK3/rZK52f0YzS3VxyOrewizzpmmev/JBKs9f9A86pIqaLFFVIz7XSQ0EZs0RS7r1qzrIJb3Z6cxAhI1BlC1G5hphc7kySTpNfH5OYbmm13ZGI5jYDAm82f35g1vq9+vTaXRJm+TsSyi5m70jELeRJx488g3UKhOdFuiywSHil7QiVyWhFs+KeXZ+yang/nYZ0dbAWGonKBVwqSaesvAc1/4xEsuGYTnX6oH/iw+djceZa0cXsu0yY65VJx4289i6T/UsgVHPSpetx2ditCelKYzqhPLoceZ1x25iO6yKbva6vRT8NlrlxQnXymd4sW6Uu7xwmE1WuZlZ+m6nSeyN+T/fECgHRfNLJanvrSanqAiuZdNFLuqvYjdOSpJsVh1zKB10DdfdpsCgKq+MX2ZogDm0++LJKdx5sDF40pbmz1sGcPu7Tn8XtVFwc6ZJc7hyjkC3V3yf8IWgPOpfvMoEgCKoXSAdBUP8C6SAI6l8gHQRB/QukgyCof7Gkg2EY7sk06Q6/vsEwDPfhP7iYbvORwTAMtzJIB8Nw/wbpYBju3yAdDMP9G6SDYbh/g3QwDPdvkA6G4f4N0sEXYfdNaj9+/tmqQWVT2W/ES9u5urpyhf5jro5cSJZzNXv1Dkn34Y0xxly/+7p+15/evTbGGPP67Zet/zC+vzxd2++oe/M8lny8twWbvEq7tg8gHzHprNZ8JSfJAtcF11d0Ilc/LXRuRTr3VHhwId6AdOMs5WjyfDefNWkXExrMzdOnuC9jjLn7+OtbW9JlLlPvr29vQsw1br87yxBJqxVVIGklPObGIwxSGX+5LzQm0RaV+P8KbXZsSzr7g2R7IN3ImmhWz+/CkW6CGlu4ymWWt3P/ITlkg9+5r1V/Xo10XHlKuqLIUUO6NHYziSzayPLolEtAnovphmEoJp1Hikn+hDxFTKcJmZwSImaMXyLuTKHWpFNcpu7CL5zQMJLCG8bU0XgVp6cuf/TGFlUO0MZeJjVg6RrHF4TOUgWYuh8M3vwdtqFJxJBRFVmnFemULVhrct8LeJAAAAvgSURBVFUBfGRymkZ/cg7rfnX6x8/t/4itXJ+9htOMnvbhdA1JRM3P4KzRI49c4Zena/u4qIsAPfcfDt7iV550Yy8sB6kXhB0DNWD2GsdBypk+H5CCdNE01uSPQkiYwlGo6R9VxnRyRknCy0yxm7weF2WvmtW6YQDpfqWLR+G0jyOR4ChPOmovglmlKu1iKrmezrL1r29eK0hHs6yQdMKAuWuUUlf2FfPpdmmkIwFUSjQN6fyn+k1YshFnByNDiYzUhBhNQJsPx4h0Pt1Aum+HXy6aoEET5WgniaQb45d4Vvs5Zn0XruSdDazu726MMfcfplhvedJJA2aukQ5yiRfHITLKWC+NdNYpqkgkVROQrCmvvglhnWZfNbvNms1eudP9QzZpBelCq0hXtLok7EVQICjs4lQyBVC2r9VJx90XQsOuiHSPiTZ/e21iea9TrqYpJ0vkyprVPd8y6aK4T9h5SMsj/LmW3dqcU0+YOyycvdLbgjTpdDeXpMBSduGVuNU3f6ditew1v1VK7Gyos9dLBpxzRUyX3ZGovuNEOF0oXyimSwuFmK4zV+9I6KAQ3tIRrLKH6+hs8PJ85wFr7MXfkVB24ePDT5NnkC4eQHSUHUM6YP4aM/8BUDsSIJ2wPKffIdVUJjuaycRDyf10ynMNtcxHVu4sY/U9587h+MaIOPpIVqbiANDNUvrmErmRsi64xcE5pKNfAfoofZfJOGDhGmvvMrlkK5PKJqRL1+OysZvcbCnUNNHfIeRdtnKXbvUZiTASKTSzFwF/O+DO4ULr90P1nwZT8svWT/GX1uRIV/rBLyW8ov1Wv+blwK4R6TLL7bI3/KDrORifBlM7RU8Fv8jW5Gok2nzwaZCqx5k7lI3+0tMv9mNh9aQL77w1S3ygCo5eanzCH4brvMPvMoFhGG5skA6G4f4N0sEw3L9BOhiG+zdIB8Nw/2ZJB8Mw3JNp0h0hCIJ60d+5mG6j8UAQBLUXSAdBUP8C6SAI6l8gHQRB/QukgyCof4F0EAT1L5AOgqD+BdJBFyH3PXG/f/9u1aCyqexX1KXt2O+Vc+VXV1dkHWUhWc7V7FW7It3nB2OMuX3/fYvON9D397fGGGMePpfUPlW3r9clvWJ5+QDyEZPOas13ZJIscF1wfUUncvXTQvdTXhoqaQrdU+HBhciRbhiGxUk3zkxuYrYAHd3FhASnfbChhHRM3cxLepEiISJUK6pA0kp4zI1HGKQy/iKxyJ3r/yu02bEs6YZheHx83JZ041TWxTcFXUyUcw3bjmb200QFpBuvgqjJH7lUrUY6rjwlXVHkmPIoyyny917tKWR5dMolIK8ypkuCpHCqhYftkeSUcG7SoHMZWxKLKbuYGkiCPK8jqin6OqdWwmH5bZ/g5dWRmgyPM9c7FtP/RQj/f7hfKSZOuwCRiCGjKrJOK9IpW0iplDIuRZ47V0hO0+hPzmGH6WeueyJgzTpdOLXiwCTIQcODwpykMte4+vf3t/ZxQRcndEiYkJpyFzZ1H3QRX33UH/3iMC8de70i6PJR3SWTLpqrmvxRCAlTOAo1/aNNYrpjSKgUiEceeUI7HM6GYbhs0nFz2z6PJ2VwlCcdBToutyvrIo6SqLFTTWV6T7YFRO5nsBi8dASxcigjXj2fbpdDOhJApUTTkM5/qt+EJRuJ5O+6yjwik1ku+osQSWbEx5BuF086LmpiEkifLRzpmCU6Jt8t74I6ww/PqKa4sbIopXEVVJdfOj6/z23VxCSMMtbLIZ1ViioSSdUEJGvKkZoQ1qUBnf3jp/sM3L7qUZG9cqD0D9mkFaSbpCJd0YqSsBdBTf6aLuK+xirZdHpV0jHXW0i6x0TMWd1K3uuUq2nKyRK5smZ175jbfyBTVyPuPJBrf2Sbbm3OqSfMHRfLXulMS7oFJHefxOncoi4+P8QN+8tvQlPrZ6/8hZRmr5cJOKeKmC67I1F9x4lwelrObTgcqbisIqYT6HlMYrrOVLEjEc1PZm6HgQo907369NpdEjkFsZGmi6T1CIVCU7N2JFRbEEk4zFxv5j8DCoQgXTayK7rLRCCdzFO5qei2YeWqHFfCVTPJwh9XubOM1VfdZySoZX7+LhMCBK6sMHOt6CJdi+OiPKKjGXeZBA1wd8f4/QnDqL3L5DKlTCqbkC5dj8vGbtlmi6CWhZcrN7qPXvSq+Z8Gy9wCoToZt73mhDuHldLvh+o/Dabkl62f4i+tWUS6+fCK9lv9mpcDu9mkmxVRXNoHXWcInwZTKEVPBb/I1uRqJNp88CmRaqX8zJbyc68mt417IbCrIV2SuyKeWEP4hD8EVWtX32UCQRC0iEA6CIL6F0gHQVD/AukgCOpfIB0EQf2LJR0Mw3BPpkl3+PUNhmG4D//BxXSbjwyGYbiVQToYhvs3SAfDcP8G6WAY7t8gHQzD/Rukg2G4f4N0MAz3b5AOXsnuu9gaNqismf2SuB8//8w2cnVlfvzMlLT11dVVdmD2G+hcNfkUZYNRHe4sv1zT8rY+R9J9eGOMMdfvvq7W46d3r40xxrx++2WB9r88XdvvmXvzPJZ8vLcFa15jM/sA8mlC1sxK7sKHVIQzf+K9fPnSPnUPuELBJNdsIfXLXMYHEN9mAAjyJ77IBl1NDZVcoZJHSoSlg88CcUM70g3DsBfSjfOcw8rz3XzoRF1MZCH05vnbsqT7+vYmxJzqRdi3fRJpqhVViEiakuuQwEtJupApcb8C6cjBZ2f4fASUxl+aIWUhy/WlZ+ImtqSzv392FqQboRNxoVUXU3i1XjA1juT+Q3LIhq5zr3QTr0Y63zLpNNmrMcbWt6TjI7VvB0XqWp1IkrhR5o8y0YrgK0d2fpxYgcX1vWz2SsRK/pS20dkkO6WTU+4++m2OEVBY6GKuSTdPn+q6YEg3tT8O/vTUJZ720OlpxFBqGN7l0GAViO9+fnjDt47GckLqA5Gs04p0Qk3fJiRddDRCm3uaznRNqlgUAWWT3JRx7mk8uERcXKYkndL6+u43ttuScUHShRM1gsV4dERSmMEJMzw4a/QY+7jCL0/X9nFFF2WkGxsfBxA9deMRhjF2J+fpMdZPPgvSCSUc0QTSpXDk1tpsHOeOVsR0UdcC6cLy/KIYt5qWpVIWTHLvFQzl+jWKMFN/KPUwDGdCunj5KYRFHMsER3nSUXsRzDpXXRelMV3+qWYYROrKXq9Ptx2SjgzKSommIZ17+uPnn8otBWchpvMm9rdDSLEVSFe0g+HjplWnmphORuoc0vl0Ox/SjfEIPcOjbO4kDYZiLpxCKr+RWV00IZ1tXDGMMEQlLs1BPMpYd0g66xRVEfK4aspyv0SI2pRLda6aoWI6nmj12as+uvGDrDQcS8uFdTqSTRWkE1qbc9U2ae2VdEXrU8JeBAW7mi6WI500DCXpHhM1fB+0NYkqORUtKvdLsvut5FOyvJp0TWK6A7MAJ7SQck1DOmGQ+r1XPROzV33w1uacmm9fbJu90huLNIZ0N5eczq3oYgnSaYahzl53DjjnipguUlQhPdcVkqQjl+3qSOfckHTZo66ODBp9FsxFXtUhmIabRdcbxXTNvdyOhIwDtwF6Wm7/eD9GNxNugpV4Nvx5vvOANfbi70jouzgsQTpxGBl8UzsSZ0S6LLBIeKXtCJWjdTr7gIQax8GIdB5Z4r7W2XuNoip51b+adNnyovE3Id1hgYzV96J3mcQ3f8TxS7KGFQeAbp7TN5fIjRR28evbYRnSScOovctk5xYI1Zx06XpcNnYTSOce6EnHuejmNa6CTD3lzR8aAJXu/Lbi6Wpe7dNgQbRVamYvogf3d+cwmahyNbPy2yRb8JnlQrwXyUdZNaST3Zx0aZ3sOp28/F+NuSZH94y5w3qkExfmc17/g64ruq9Pg0VRWB2/yNYEc2jzwZeVOKsdd4JC4XNgXBRWapl92a0AOUeeE3K6hcJs9LcTL0i60wcGRrF3wF64O/uEPwzv0Of4XSYwDMNlBulgGO7fIB0Mw/0bpINhuH+DdDAM92+WdDAMwz2ZIB0EQVCvAukgCOpfIB0EQf0LpIMgqH/9LxHP/olgmLEUAAAAAElFTkSuQmCC" alt="" />

任务

此节没有任务,快快进入下节,学习Date对象的方法。

?不会了怎么办

此节没有任务,快快进入下节,学习Date对象的方法。

7-3 返回/设置年份方法

get/setFullYear() 返回/设置年份,用四位数表示。

var mydate=new Date();//当前时间2014年3月6日
document.write(mydate+"<br>");//输出当前时间
document.write(mydate.getFullYear()+"<br>");//输出当前年份
mydate.setFullYear(81); //设置年份
document.write(mydate+"<br>"); //输出年份被设定为 0081年。

注意:不同浏览器, mydate.setFullYear(81)结果不同,年份被设定为 0081或81两种情况。

结果:

Thu Mar 06 2014 10:57:47 GMT+0800
2014
Thu Mar 06 0081 10:57:47 GMT+0800

注意:

1.结果格式依次为:星期、月、日、年、时、分、秒、时区。(火狐浏览器)

2. 不同浏览器,时间格式有差异。

任务

补充右边编辑器第8行,使用getFullYear()获得年份,并输出当前年份。

使用getFullYear()获得年份

var myyear= mydate.getFullYear();

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>获得年份 </title>

 <script type="text/javascript">

 var mydate=new Date();

 var myyear=mydate.getFullYear();

 document.write("年份:"+myyear);

 </script>

 </head>

 <body>

 </body>

 </html>

获得年份

7-4 返回星期方法

getDay() 返回星期,返回的是0-6的数字,0 表示星期天。如果要返回相对应“星期”,通过数组完成,代码如下:

<script type="text/javascript">
  var mydate=new Date();//定义日期对象
  var weekday=["星期日","星期一","星期二","星期三","星期四","星期五","星期六"];
//定义数组对象,给每个数组项赋值
  var mynum=mydate.getDay();//返回值存储在变量mynum中
  document.write(mydate.getDay());//输出getDay()获取值
  document.write("今天是:"+ weekday[mynum]);//输出星期几
</script>

注意:以上代码是在2014年3月7日,星期五运行。

结果:

5

今天是:星期五

任务

补充右边编辑器第9行,使用getDay()获得当前星期,并输出。

使用getDay()获得星期

正确代码:

document.write("今天是:" + weekday[mydate.getDay()];

代码:

 <!DOCTYPE HTML>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>获得星期</title>

 <script type="text/javascript">

   var mydate=new Date();

   var weekday=["星期日","星期一","星期二","星期三","星期四","星期五","星期六"];

   document.write("今天是:" +weekday[mydate.getDay()] );

 </script>

 </head>

 <body>

 </body>

 </html>

获得星期

7-5 返回/设置时间方法

get/setTime() 返回/设置时间,单位毫秒数,计算从 1970 年 1 月 1 日零时到日期对象所指的日期的毫秒数。

如果将目前日期对象的时间推迟1小时,代码如下:

<script type="text/javascript">
  var mydate=new Date();
  document.write("当前时间:"+mydate+"<br>");
  mydate.setTime(mydate.getTime() + 60 * 60 * 1000);
  document.write("推迟一小时时间:" + mydate);
</script>

结果:

当前时间:Thu Mar 6 11:46:27 UTC+0800 2014

推迟一小时时间:Thu Mar 6 12:46:27 UTC+0800 2014

注意:1. 一小时 60 分,一分 60 秒,一秒 1000 毫秒

2. 时间推迟 1 小时,就是: “x.setTime(x.getTime() + 60 * 60 * 1000);”

任务

补充右边编辑器第9行,使用getTime()和setTime()方法,将时间推后2小时。

推后两个小时: 2* 60 * 60 * 1000

mydate.getTime() + 2* 60 * 60 * 1000

正确代码:

mydate.setTime(mydate.getTime() + 2* 60 * 60 * 1000);

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>日期对象 </title>

 <script type="text/javascript">

  var mydate=new Date();

   document.write("当前时间:"+mydate+"<br>");

   mydate.setTime(mydate.getTime() + 2* 60 * 60 * 1000);

   document.write("推迟二小时时间:" + mydate);

 </script>

 </head>

 <body>

 </body>

 </html>

日期对象

7-6 String 字符串对象

在之前的学习中已经使用字符串对象了,定义字符串的方法就是直接赋值。比如:

var mystr = "I love JavaScript!"

定义mystr字符串后,我们就可以访问它的属性和方法。

访问字符串对象的属性length:

stringObject.length; 返回该字符串的长度。

var mystr="Hello World!";
var myl=mystr.length;

以上代码执行后,myl 的值将是:12

访问字符串对象的方法:

使用 String 对象的 toUpperCase() 方法来将字符串小写字母转换为大写:

var mystr="Hello world!";
var mynum=mystr.toUpperCase();
以上代码执行后,mynum 的值是:HELLO WORLD!

任务

1.补充右边编辑器第8行,使用toLowerCase()方法,将字符串所有大写字母都变成小写的字符串。

2.字符串还有很多常用方法,快快进入下节学习字符串其它方法。

message.toLowerCase()

正确代码:

var mychar=message.toLowerCase();

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>string对象 </title>

   <script type="text/javascript">

     var message="I love JavaScript!";

     var mychar=message.toLowerCase();

     document.write("字符串为:"+mychar+"<br>");

 </script>

 </head>

 <body>

 </body>

 </html>

string对象

7-7 返回指定位置的字符

charAt() 方法可返回指定位置的字符。返回的字符是长度为 1 的字符串。

语法:

stringObject.charAt(index)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAVEAAABcCAIAAABY/RF/AAAG4ElEQVR4nO2da3KjOBSF6WX2rCa9Du8gW8jewvxwhVJ0HzrCkGDf76tTUyCuHiAdScZOz7LGvL+/J1cB4BlZ3lN+u3kAcDDLdnT7+IsQemGt6yeeR6iQ8DxCtYTnEaolPI9QLeF5hGoJzyNUS3geoVrC8wjV0omeVwrsYph3nlFtr23HtiuVFPQDOsvz7jiwAS1RJLq4RM/bxK730c/oeM9bM7uFY/iXUdeDSb9Hp3T9z/bX579//356b5/MC9Eccfv4+/bFrz81dFfScft6v4ukx8/ptePW+Vkn2yEyHC63j7+MgKtJGTnJABiWT48fq1M+z1snr+nGvrO6jW97nRFwNbndPTR5NDbuosfP7K9zPs/fvA5OgqOMt68NXnv6608NtdKn72R2aAukx0/urzP39jevm93IaAS8GX79kaFNbl8nvZmPjXsMPX5+r535mxy3U5Orbhgdf3El/Rh5vst482z/6/f1qjr3+/nEyTbMnm5iBFxZs56PTlvR4+fpJ9b53PC3eMuHnkJuP3Z9ejO9jH5Lp/8mJ4/pUqJTdFnlk7V7KZoa6PGf6jL+xgahSsLzCNUSnkeolvA8QrWE5xGqJTyPUC3heYRqCc8jVEt4HqFacjyf/EwKAJ6a28d/eB6gEHgeoBZ4HqAWeB6gFngeoBZ4HqAWeB6gFtU9vyzLMCDivEqnsuiX8nrFVilPTIzXi3Ijk65ZluXz87MN/vPnz5bSHkcxSZgekOdVmirWONXy6p5fv4+nQ1wR5RWnj2FYXlR3O21iUql+d0mYfo9ijUvaNcuXW7Yhbg/uDC1xT2n/G4Xl96hPAW6bbVFijd0M4ha1Udrzi1lGFtl+0TieqveM7N297L5HJcZ9CDZv0s7kXobl5K1qV/Uu0U3ZrBIZPkoUr0bB+YSl1BhNVVHeu+f7/0el2O5nRxlVq+AivTrFM3lr8/iobcmpm0WJd09X7zaTdroltOniQ1P2w5031u9W7+YLu1QeaPg1nnfcg6TG2R3NyjqfnA7jj6q3u5SThIl12bselrZMel4MsAddq9w7ypvd4m6eI0t0i7zN3oa5FU0hrvN6jdEHFlt1Uc8vZs10B+IQvbp9RYlV5NnFGpO63AcV5UoqsqfupbZ3htXdeXydj/b2xy7vbcbt+TxeY7RhacvfwPPfUuxxnvh41Xld7rgXGxZNJdZpw0lBDFNapce4j8hmcXfmUYD+qk9x4IPv7aNlebZGu3/Jm1fR83YwLfFiIo71ZPQnVQ8N4x4MseVHtknsNBsmNiyqQnkIbhblZXu+i44+z9tNwfAGu81CQrTp6A6UpxrdPp53WIzxonFpx5+baziI87qSksV4paguMWG2uq7YYbB+NSkt2bq7Ae4lN2y4jE+tunmz1+8T0OzOYmqHUt3z3TA6yfORB6LqxNO8UiU+mVN2ez56YrNF6Z63614XoHh+NXYduldxYJK3W6XFXHqNeL5nG0b54qZ4fm1crVfaZozG9NmeF8vRw/I5cV9Refzw2yn7eX71NgXRfmHHp2vlQ77+ml2JwfMDRH9uwQ+WMMw43B3MFpiUnMQ/6PmuZGVOVDxvJ2Ud8Y1d/h2ePd0Sl13f0kUoHyWiGqOZDs8DAJ4HKAaeB6gFngeoxTGe3/FOa3vRMlsXADzCb67zh3j+7YtDmgTw8jy95+/geQCRRz3ffh3qJlpjR5dsovul6xbf+hzPA4ic9Xm+tai18Y5ja3g8D7CDcz0/e5yv/1vKm2G2wQBluZbnk8K7q1gdYB9X9Lyyt1/ZzwPs4sh3eJ0/7WmSxeZyI6O9AACI8Ds8gFrgeYBa4HmAWuB59d+KyCPtK8xDKp0qZ/Zlx2yb4TXA89nQd18iui8Uk7eYrpcO8fzQtMP2u1MG701fm4qe150gWm7zuZuuVK03zw2LUqIG77gKL0NFz7ckA33K8FGu6HTxFth9l7oZJ2l5kp5PFvvgV5LXpLTnRZ/ky3JSwu51Pioh8nw+0djak/YrLZwCz1+Nup4XfZLn6tJ1wyTV7fB8nsvNYkvW544h/PnTlSnq+XZ862tavn4O46MZocu+I6yrbuj5qG3r9xkkfxoR/Mnjxanoebsw2tNVftXXlZb7avaSErbP8zbdFu6m57MAf/J4fSp6/s7Q88Ms0aXIe+ICPlujO1tNlRZNW93BcE65g9UvDp73T5Usw0v71vnZGh/3fHs1mbxEz6/s568NnvdPlSzDS7PxsyXYPYL1rV6pMncM9/Zwfap7Xt9p58N91h6HeN6N2V2p+0lEaSQ8F3U9D1ATPA9QCzwPUAs8D1ALPA9QCzwPUAs8D1ALPA9QC9/zCKEXVu95AKgAngeoBZ4HqMX/mMeMeEU1OF8AAAAASUVORK5CYII=" alt="" />

注意:1.字符串中第一个字符的下标是 0。最后一个字符的下标为字符串长度减一(string.length-1)。

2.如果参数 index 不在 0 与 string.length-1 之间,该方法将返回一个空字符串。

如:在字符串 "I love JavaScript!" 中,返回位置2的字符:

<script type="text/javascript">
  var mystr="I love JavaScript!"
  document.write(mystr.charAt(2));
</script>

注意:一个空格也算一个字符。

以上代码的运行结果:

l

任务

补充右边编辑器第8行,使用charAt()方法,返回最后一个字符。

mystr.charAt(mystr.length-1)

正确代码:

document.write(mystr.charAt(mystr.length-1);

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>string对象 </title>

   <script type="text/javascript">

   var mystr="I love JavaScript!"

   document.write(mystr.charAt(mystr.length-1));

 </script>

 </head>

 <body>

 </body>

 </html>

string对象

7-8 返回指定的字符串首次出现的位置

indexOf() 方法可返回某个指定的字符串值在字符串中首次出现的位置。

语法

stringObject.indexOf(substring, startpos)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAewAAACVCAIAAAAVEl6KAAATC0lEQVR4nO2dQZLjuHJAoT6W6gx9AI/XZl+jdIJmr3tOMPvSZnyS0gkcf+OIH44fDkcLXlCiICAzkaCkroL4XmTMUCAIgCrNY1ZSNQxR4a+//tJ2AQDAJyH8pfPRawMAgAph+tfPv/+NIAiC6CiOx19InCAIotdA4gRBEB0HEicIgug4kDhBEETHgcQJgiA6DiROEATRcSBxgiCIjgOJEwRBdBwrlbj/fGOM//t//9N6FEH8/ojx+M9//ePn33/EeIwx/vz7j6lx3p67ZS3HeJz/8O/PpJ3oItYo8fJkxdOPMf7zX/+YJD5vr+ddIrqLSeLan2UbHp8k/ufff8wbH34uhD9WJ3HtI669A2TiRC/hzMTLwN1dx/H4a7fbrUjic9inXPr9v/773Tb+65kPPzVibRGTekhV2dpRM5nN+WB/8lhXJm6n4eWbMLVMmfi8136v+KwTHxWeckoq7rKcYgzOB/vTxrokPkV6spq+fxbG/5lUybPO6eebzzrxUZFKPC2q2Pc2jbuafLC7iNVJPEuoM5uL3dIbm6XEs980+awTHxVZlu2ReFlRmT3OB7uXWJfE43Vpe26MSp2kNHsm8deCDz9HYoUxu7jp2ymztctvp/DB7ijWJfEsMpuLu9I+nkycID4qlpVTfio1cT7YvcTqJF6qOW0ve/6UaujZmHzWic8Q95X4Tz7YncTqJJ6FKPRyr6czQXxsOP/YR/yCCtFvrE7i0ofb6vZTqqKs5+0ieolJzWkmnu0q//bH+T1x4pPH6iROEATxTIHECYIgOg4kThAE0XEgcYIgiI4DiRMEQXQcSJwgCKLjQOIEQRAdBxInCILoOJA4QRBEx5FLXPwLLgAA+IT8+Z//jsQBAHoFiQMAdAwSBwDoGCQOANAxSBwAoGOQOABAxyBxAICOQeJrJIRg79V4xHT3WtvxePWQms1mk7ZkL0uMDk1DNe29ZVXZ3upQ8Kwg8ZUyu7IqzfvO5bkkOCctxZ3i0eVms6leEsoDb7wepFNkC5iO8qwqnUjsj9DXwzNLvCqL+0706FnuxbRUTeKaPm55M8W5sm3PpNVumrVn2bVm0FXJVrWbdUs3spfGysUVtib18KxMEt/tdk8o8bhIr4tVdRdezzxuCs2kacv8JogvW6cTD7eXIS64XMych2ZOTO1pOLFqXvtKoFk4o1WvrRIvT2SZzXe73fTZ42LQF8+ciccOJT7xIInbJjUOucu82QJuH9m2lZZ9i+bVupXSv0vyW82p7Yw+W8x9U/LdbofE+6I/iWcf61jkeqmFy86eccr+08uvX78a41c720tKxf17JF5uZCuM18lvkLSrtZfzRl3i5Ttv/yDmEdKKcOlBMVEVayaekkVpf4987em0lqZd1Uy8vPxkpOJG4t3RmcTT/6QfsV2+zNqNXVpnca7skKyE8pslHguPNw1oHF5KrVyGMexiRLPbPQ39lXtvLLIbdyOd5fVoXku0qou42qmKgsT7pTOJR0WmoiiNbW2cslva/vXrV2NJWmdxDWnja4H9DiwjXAu3XHC6QgNjzKapxXfeHq26NvG2YXSIzFOGbrpTqhncrvCUBzp/MxDfB8+5z3XwGQzeHf1JfEI0sn9bG0frFu8k8ZiYKO3/6JuZ2dps52adbx8tO31t2KBcSIxh/TVxUaDV6rOnbm6Po1n19q+gODPxeXnae5Vl4tAdnUm8Vdat2+XLtP2OmXjJ75S48TKaCe/i6dJ3oGzMVmJM5BRlVL7Ptyx31jp48npjr3aL1TjHoJRT7LeiCiWUrulS4qJTRONo/W03+ftXJ81Gs+f9DYjvW9kn3QgOt9ozakNl76TYbq/NqBVU70N6ulUr5rdIXGx5RCYOz01nEu+d1KG/3+PZ1MY1LN1ILz+LZ4yFmrO3ImvXVihKXCwXpLsytGTW9qP9dcO0XdyVLczZv/qrg5a54/H1gMR/N4Y9AQBaQeIAAB2DxAEAOgaJAwB0DBIHAOgYJA4A0DFIHACgY5A4AEDHCBInCIIgOgoycQCAXqGcAgDQMUgcAKBjkDgAQMcgcQCAjkHiAAAdg8QBADoGiQMAdAwShxzjWT92u6eb8SgMTzfnkzTsZ2M6aTrQ09k5oP9BoPea9PYnujkX9uXLl1+/fmkvq/0XDJW2i32+fPkiPhophGCvbcGam1bu74DE14L2SRUfMxSkJ7SVA9ot4hTijOH6OXD+GbXnVTofjmyjPYl4waPUnB2qPdOVlM9m8zxtufWhoM6h7ihxj1XLAz0Stw+cNrKX4ntSxX/tqU6UrUoEiUPD0+XtdrEl/WfWbiyj7KD9hy2K6b6ZuP2kTXthzqfXO4dK1+N5SLTzrWi6/NjPm7ZHK/Nij8LKxvSdmZ2btWiH26OVI3swBtEWaa9ce7vE2SeJ73Y7JL5eQq12UXYISh5dHpiidRa7pS89q42SCjONNpVH0hGanCjuberctNfuv+AK1OTo8pcDsWemKk1PHhvaVwJxrzZUdpqLs2/npci/cnFMbRYy8RVRfo7n9rJPdmA5VHaIvTeYWXZU8vSgXAxKSq1kWeqCfFzMfO9SYb+xBl29PHgE3XRlsjtk74/xo9Gyb0NzZbdS+qL7yl0lzgy6iv1bhXZ2C1Yu7kLiK0JTreZo8WNdHmLL1/inOF15oLj+adsQSuZxzU3BUePWJO4slZTr9JS8RQkapyyegj3XIyRuHJgKSCwspDhT1NKP9l5xwGp72sEwezmLpunqyqNygSETXzutEk+3y2NLs0fF1E3q11yfdkvbRb94bm/aNeXSpNVM3FZz67dKjIVppXZ/eV1738pt/1BiJp6l4VNja526zMfFvUaBwpa4U5fVe57VVNq/8iaQ+IoId5V4tbP9378xYDlpOmDaR7Sw+LJJ4mKHZeOUNyE1x2mz+0+k6eUda+LabzxZGu407Ixd6da2W48SF6DdUK0uWLsALFi59tMpB0fiK0LTqCHxUqPlIfY1wG4sVyVOJx5StouKvL2cUh2kKuhbqtjZaLYr/S8fVxM3eopf4/Pkxam/PHVzY9ujbFvT/q8PGh38K69OgcRXhOFEsSUU2fECiaeHlLIu+2jDase2SspJmUFryXg1ozcWac9u79Lm9V8PnOvxLN75tov6NtxnZ8Rih1skXs21bZpWi8ThnohK1Yw/99GsGnWJVwf0r8FWkp26ehCtrSWbreXyu0jcOXiTgpct3lkTj25dVm9Xlul5eaw4+ILp/Hgk7l+5dg1G4nBFaeFsu0Tslh1iHC4OlQ0rDi4em7Exv5Ti97hdrAjKvcHyBEvXG32ycZxFHruz86zvcs1oKqeU74OYMmvtWm4bpG+DaEI0dpWrcuI8NefKxfGROADAU4HEAQA6BokDAHQMEgcA6BgkDgDQMUgcAKBjkDgAQMcgcQCAjkHiAAAdg8QBADoGiQMAdAwSBwDoGCQOANAxSBwAoGOQOABAxyBxAICOQeIrIigPRbvLgNpo4v9r/8Z5PSx4JBs8mtYn5jj7Ox+h0PocOLvb4ofTewZvmguJr4uqdpuEG/Sn2huz3Evi4ry3PFcTHk2rK52PZ0tb7OexVZ+gZrc4Hw1qnJfzuT/GKfNkH7hg5M7phiZ0+2Xa3nRhiDHGuB9CCCFsx0P1LOxHPlYP1+bfbIa31qP33y7PXxvejse5aTu+H7N+p/2LFjeN+f39xkvUZZzmgZaegeeBk2UGmkkzazQ8mM6r2bPpaZY3ZuKea0PW6Jl0LRLfjw4f3HyIxuuZO413E1WrhuJBmqF49GW21zOa0XLNYdyGYZ9uqIhPdGyS+GEczRm8HMaXTbh4bf9ts5nUfRhfNpnEW0cuVnj7mD9+7I/HePgxjdM20P7bZrMJ4T+aJC6mz9VH0YuONpJiW6yL95ait9P/6hTaBal86qYn91+FxA/j1pXU3XZIlY+VuF+mpY5LiZd7tWGr14ycw7id3/n9YFhcHNnz7PkL+2EThv3tRZdM4TFeNH6jcMWc915jLpN4jPHw46U9E9cyzaikqJocNX2H4lnDqWG1a4b4KRLtnE7hvGzY74B2LuJ7Ykz0jBI/jNvTj2A7HpJXYTsezr+ohxBmPcy/u+/HbQhh2KeHbLdX/744ZR5oNs71vBOpuD88E7dtW7aHe2TirVyl36nQdcQcXJf4YdzmT50f9tOPczuO8+djO77vh1MxZNoI4VxiOYwvyRDTUbnUThZ/H18287Cn15u092FqONdHzi/D9vv78TxvNnoq8cvh34dTeeTtstqpy4+XTX7GIYQwfP++3WzH97dhs9mEltxal/g0kvjOeyRuW1XsY2fi4gPvjQq4lvOW1ZsFlfFlEhcvHilPKPHDScXxMA7jIR4O4xDOXj2M28TlZz+c7TtpfNhfHXKy9bA/b85Xhu14ODXNv/wn88ZzFWVe2IdLPCrZ64TYZ26JpsS1dhtxhbnEKwWVGIuyeEXi++H8WRhOP++zmLebcHo1W/Jk6+HtVBgZ9unGuXYuJOLzGO/jy9nZ51FPRx1jjHH/7WU8nKrn09XiUoUZ9sfjYRR0eZH4/tvLJPP9t83L+DZu5wvE7NmLcM8Z+NWuor8HpXN2Nc32+jNx+/ajUROvDmXcMjXK64Zz7fqPfQrigNlQItn4Tyjxs5PT38mv75Gdk+hriRc9Uokn14A5Vb9Wdz7va8HvOXsnmkPjwzJxY8YUfyYufr7rmfgpET/peLtJJb4d30/bicTTnPekzly1UtHjKhO/jDDsU4mn90JDGIYhDPurYWyJZ4efMuvjMcakVLL/tnkZ3xNPX0m87O/5ITVL3LBnlFRryEs0qSY4u/Ju3x31XA8eJHFtnLVk4jHG2dPX+XM8iXbYS5l4mvEtkng+b56JfwY0QWt9nN3EdnE0W/QxNtTEZ9oy8fMkmxCGMcvEnRKfUvDpJ/12ztyzVPzcOx+hkHhq7Skdb5J4evi5PZfy7PppJJ/EL0WY8gssN5RTnBL3Z+L+ckq1im2o076WiOvU3gH7XJreqIknlPhh3A77pHKSWvhc/DhXQN0S95VTrueN8XOUUGY82tVUW3W9JmjjMqDQ8O2UCdHX1XJK3A+b7XaRxPfDqQaSLvplk3yVUPx2ipS3X23vx3GbvtzXJF4cLkl5Krmk15dHZeJVNB+1ZuJZoy3xcJ1lB+X+Z9lu12G06aolcqf97d8hUp5S4kN2F/JcPrncshzGaeOi5qT79SEnc9dvbJbzfioM55bmLQ+JZoottmcHuiWe3qRwfT9ok9QU6n/ssx/OvaekeJpovPw43893PucfehjejmnufbnfeDpimkf4nni8ugma1FCuv42Y7M5enl9vv5+qJ8Pb25Dm1dcVFcdqv78fs2NOfTYhuG5unr5i6OucUCaY6aJbM/FsTHEcsbM2/txHHCdK14PWG5vaejwvjcYnlPi9KUrqz4ho2FK+5XZQKDuLfW5c84SYhovtdyL9E4LD+NL6bb+yaPJQ9j9+HOYryo+XF2+6fVdE8y7LxI3BNaUa9z+Na4l4eHXxzjdBXIbtdG2FSLzKKiQOfubbmjEucnheyX4s823NGD/Q4fBAkHiFy/fKP2ONBD6EpEDRZPBzGeOGv7lfQFI8WfQ39vDJQeIAAB2DxAEAOgaJAwB0DBIHAOgYJA4A0DFIHACgY5A4AEDHIHEAgI5B4gAAHYPEAQA6BokDAHQMEgcA6BgkDgDQMUgcAKBjkPjq0B7yYPes7vU85OEuA5btxuM07Sdtig/nNFZo4xytadIblwRrAImvDr/E7Q7lc3zEp/aIj2gpn+xTTmRPPW9XNWcrPn080Ob6QWfzg9u19WfD3kvi/hkBIhJfIbbEDeem5s02yvbqdEEXfdnoXFtVu1m3dCN7mZ1F2uixs/OXg2xquzOACBJfHVWJO4+9cTp7217k3O5JdZv2eo6yc+dMytl2tZvzCtTEbrd7fX19fX3levCUIPHV4fHjstHEAQ0faUsyxryv3SY8ZZBqlp3m1KWIy/HFK4FxATCmdrLb7ZD4U4LE10WoVT/mdsO52Wh2i2evKHRxkdoIzsqybWetJTZK3D42KGUfYxnVsr62NxU3En9WkPi6SCUeisKFfVTZOI+gGd9InI1u4mqrAy64vTkbUDO+v7hhZOJZGu5crefU7Dr+VEVB4k8PEl8XoV3iYgft2KBXQoyXpbi1WbTVLqiD22UNYwTjELskYuy9Jf0X98518BkM/qwg8XVRlbideIoWNiR7o8TFvZ6k2D4Fu0J9l5p41fi29z0rTzuLgs4ycXhWkPiKsBPe6iHGXlHHsf0Li+KMnqXe/vc+Rlbb+gXwBWm780vlrVBCWQNIfEU8TuJai/OlaHZtqf4sdaK10rJM4s6aeGy8bNj1FoCIxNeDP9udW0SlGmM29fesrRywKRP33EUU6xi2shfXxNMW48sz2XfGPd9RgTWDxAEAOgaJAwB0DBIHAOgYJA4A0DFIHACgY5A4AEDHIHEAgI5B4gAAHYPEAQA6RpA4QRAE0VFcSRwAAHoEiQMAdMz/A8Mk75gG0HjEAAAAAElFTkSuQmCC" alt="" />

说明:

1.该方法将从头到尾地检索字符串 stringObject,看它是否含有子串 substring。

2.可选参数,从stringObject的startpos位置开始查找substring,如果没有此参数将从stringObject的开始位置查找。

3.如果找到一个 substring,则返回 substring 的第一次出现的位置。stringObject 中的字符位置是从 0 开始的。

注意:1.indexOf() 方法区分大小写。

2.如果要检索的字符串值没有出现,则该方法返回 -1。

例如: 对 "I love JavaScript!" 字符串内进行不同的检索:

<script type="text/javascript">
  var str="I love JavaScript!"
  document.write(str.indexOf("I") + "<br />");
  document.write(str.indexOf("v") + "<br />");
  document.write(str.indexOf("v",8));
</script>

以上代码的输出:

0
4
9

任务

补充右边编辑器第8行,使用indexOf()方法,检索第二个字符o出现的位置。

mystr.indexof("o",6)

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>string对象 </title>

 <script type="text/javascript">

   var mystr="Hello World!"

   document.write(mystr.indexOf("o",6));

 </script>

 </head>

 <body>

 </body>

 </html>

string对象

7-9 字符串分割split()

知识讲解:

split() 方法将字符串分割为字符串数组,并返回此数组。

语法:

stringObject.split(separator,limit)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAacAAABsCAIAAABB1eoMAAAROElEQVR4nO2dPU8kyxWGq/cXgcRswP9gJdtgbnT/wsUZs9bOhpfsIm24JEt6LQicLhlkkJiYkSxrkSXLsizrbjmo7pqaOh91umeme6DfV69QT/Wpj266H071x+B+/vnnX2/fwzAMj8TOe//r7ftPf/0dDMPwqzeoB8PwuAzqwTA8Lm8R9bz33ntj5H//9++2tWC4m733//rPPz4tH2zN8u+TsO9sCY2Eh/W2UI/Ci8VZOP4C9eIyqAdv1OmRRqWAL36kQIQH9FZQTzqeJKIh14P7tDHX4yoCdtvoraBetI4wCsS///NvOiJPGw2+afBLdPEPsFDru+eU4Q8H51Aennp6okePtlAScr24Vj8ocWDBq9gbZrjsJTxLroeDs38PT73gFFvKX1dKQy9c3UsPJhxY8CrOjjGywF/XU25l4OAc1ltBveww8vmlEyYsvZtBqZdNHHBgwauY/qEtUo9OcmMYDs7BPTz1/PLluVjohakrRWFGvVOiwfcy/EIdD8tW93BjOb2Hi4NzGzw89TJn+GNXZX94i7keDK9i32mGSz8G4+Ac3FtBPcqytJxGZqtYSuLAgtfl9VLvEw7Oob0V1MvMEpCutQTD8Or2thku3sR4Kd4K6nFHkhb2iZvYAnzwJhyOK/Y5gRRw0t1blo/wsN4K6sEwDPdmUA+G4XEZ1INheFwG9WAYHpcX1INhGB6Ja+rNnx9gGIZfvX+9/TOoB8PwiAzqwTA8LoN6MAyPy6AeDMPjMqgHw/C4DOrBMDwug3owDI/LoF6vds7payWtpUe2naywOMK1dJqWFwdQ7LSqqqdv99LHtmH6KjbG2KO9cXijBvX6tnS2S2Hr6k5p0wg+C49CCf1p2Q8K35W9QSGyOvWKa+cq9aqqon+3ioiEezOo158zClDW6FqlU7ZHGql02mpgbXM92k5xbwRwZHyhhSzmwkL8GcJYVNHGs6bYkqwj2mNH6l2+q6qDz23rXr5bbNnxL0/fHubP50dV5dzO6e3901Lw+VFVHX7JCl+hQb3+rLPANUx0y4mSUzOmFTvV49sGsEDMPtISR3hXHEYKuIw1egqWMSjyzp4DSjF6ukfZp7d/Mzu5WMchd/NxNwXlxQ9VNfnp67eH+d3JpNqZ5tTr0P6fLjoRfDqdhv8fMkja+9qodzE7uelUMf7Pqk2Mip7Jq8ClQ9dSm5RHUkVdtM2sEYnybPv2rcsY5+TkLgVQ/EjRST/qnerlbMtl6tU53cq//buTSZ67nR9V1d6Hq6e1UK9b7pl4Op2Ceqv6ZrbjJh2pF9wP9SQW0AxIAYEFEFK/UpiOHspEiWUUfDr1pK1TJOV67EIaQFO8DlflpBiWs66c611P34YKO6e354dN3cMvvxyGqeiHg6YsBiSR9bz14Wa2m3QbauVUqtO925NJtTOtmw1T3ev3b6vKuQUl704mVeWc2/twFdqPJW7y09dv50fNRv4hASv925M5Jd2ro97dyV6z96d3D/Pnh/nlQfi8N7uePz9cHDvnnJvs1GHH5/Vv5Tj+2g7qJL+uuDO9PNlrImnYzWwn/r6nd4vuFhzk2pkvk65n6s1LJ7/eYLG6WwaoFO8IfJVxhp3K1nUc6aR+Yzs5PAwjjGbhMhf4wl5lmxtyPUtyZ7ldK1Lv8t1kdv30/HAzeze9C3A5uEhBE7jWJGgNfQ4+f7tvguuFz9/u4+W5r7NdSr2bj7vV5OTr7aLZuqS53tdQ7/zobSzcnd7ePy0Wrt+/rQ6/3D/d/Wmy3L60S6PDxPbVUi8w6PDy4WZ2EH6Re84dXoaFwMHzw8isy4Oahncne2Ehljw/zJ+vp5OaXxezHXd8zobd3J0cRsbFgNBLDTjSTjOxjcPeBPVYFrBrdSlt6l23op6CPIl30tikrc62SKle3EyJO3bqKfNipaTYO/31aXcz7k4mlXOumdXm1NuZ3t4vLbOFz+dH9cL1NFCJm4Eu5Xphhktw+fS8fA8kJICX76rj86d03t2SevFaXtRQ97I3nevViV6SiLlAw5pHCaRi8pVlhQ2tmpwxOg9bNBiZ29QN+WDeDv1H9Bvd1xReevDqrbWinkIiY9cspqV+0wC2ohITA/Rsy5jrKVXshSvles8P82Z+evjl/qkj9RJULXLD7Lre9fRttTdbvq4nUS9j3OW76u3J13TkhHrz0gw3y/WG8kav64VsLmR8EUPLa3PqXU8nzh2fc7neQXJXiw0zUi9tJ8/1Nmqn5kRzNd1bsTtpOe1X+kjHZtkovUcpUqoo7YG21HOlm7brop409eZba2a4NWs653r1nHThm4+7VbVzeqvdw735uFslT7QsZrjJ8sVlxtBQwlCv6KFmtak3OMNt5rOLqWvNuMuDRa6XzXAvDwKtwmU7kXp8WI5RYYZ7kD0T0A/1iryYk5O8eM4XeywuK2v1ThUcU4YWN5ZFfFpRoZ4Elzm5h2t8ooXtpTjntZOUpV6zHWGSG56nc3sfTpo7Gzunt1f1HY94KdwdfP4Wb32ky865cMMha3xx3yO5f+LcH2Ph8vN6S6O650rqGxqL2x0vxJuj3sHepN5B+d2GmkEBUst3M5p7IIezsLBgYlJRCFvc4liuld/NSNrpy9IZroSlP6Vz3tLjvIS5tNDJXNZHTltwhFa0NXYwbEUq5R7u3HAnkeKSBVnaV1pOL+FJdbO1xYGt4PPp7Hq+gNru9LZtL/F+xdrHtl0e8MmVJDWDYXg1X/xQ7c2SR0zIbNfg86NwO3jobdm0QT0Yfh2u58XOJdNbo5up6xheR5sPSL3FA3e9zzdhGB6zX9W7GTAMw0WDejAMj8ugHgzD4zKoB8PwuAzqwTA8Li+oB8MwPBLX1PMQBEEj0F9irjf0SCAIgvoQqAdB0LgE6m2RnHPFEssqNsYSv3pT7CqlbnFUekBVVd+/f6fLbWWpm/UVv1kgrch+nygbpnxsOzA6tm77ga0Yt6htm1lrb968+e233zqMKtVaGvGgXg+SToOoLDhdkM75Ih/T6npT9q3Qe1e2K9uoDhtCFU4q+rPNNuWt2cPoAhsghSkV9VFJJevdDxLTvYr1NJiOQQLWmzdvaDtpJBuQhSkxtEEP6g0rhUQSQegqKcyvL9fTW/Yc1xyHXTpUdvDZsrKNm8j1shObbVOhnvSrkdqRIls1ta79UGzBsiobeSBOCiYlX6NwTEukZUs7qUC9IeVKqZwUUKxOSSGBo9s42RLahSPso+XKtkj9siBQMhRFlHEWgihJHI2xjEGJ1LtY137Qm3UJiy3UizGBPkZasatAvZcqFkNeSGqyisWm2JZjZNYObdAyeHs5O37HMa64pbRiFhNOTn3KaZE0LfVc/kKnkHEY+uzPkSSODlhKl6Sm1rgflA1km6VslajnyIxVmurap8BBreiZCtTrQ9IZTk91J+QyCiMcYUrWjhJmHLk0HsdRW+qUjtmyK6Qxp1egJGYZZaEe+9HYrLJWn03TkSjX9VbfD1ldCcf2BZ8AiC5kstypMMYEICrBoF4faku9dFnHgQUlEnrYRoxbIVWR4OsFLCoDU/piz3CFCxQoWUAr6rHzyqw7JUBpWVpwwo0CduTsfijuhGwDLcmvPuCobE6a4o/uqKxi29sUtAsWfKBeH2JZQMu9gXopQfQGpYq0R4U4+tiyRjJ5GbjGzVSG7WUktaKenqoU2aTEKCVSCxQ3LO/0HtdIPX0PZEzXcz3PXeNLVbyoZ/9YvPwH6vUhlgjeNq1TTnsvMEvpi23HQj2JSpYwnXq0xMLEVMWZnXGy2Ypo+pSz2Ls0M5VGyDKLnSDbB2bcFcoOYduXqCeVKOV2zDmSVCotg3p9yMgIr57k2UfKOxYcOmuUselhRtSmwUbq6fiLskBKKVRidOo5YbKpDEwKy5py8ky5mNkV94PxMp9EYX1blJjVqedUdbtECOoNqSIdjI1Q0HiOlR0aZ8dZLJG2S8Jihy68wCDj6Z21kyU46Tg753pF6rVlCh3PRveDPgxW+nW9oM3NcIvlUaDeMKInf7ZMJa2VGk+bVZBkGaoy7OKo4kd9Y5VOaXl2jtlnYVQ6yFqlaToRnAFYfpmAet2s+nr3gzT4VXI9+hRLWs6uopGWN9JAPQiCoCWBehAEjUugHgRB4xKoB0HQuATqQRA0LoF6EASNS6AeBEHjEqjXtyyPy+kxyhNhUgtr6bTYgjc8GOiWHyQ0BksqvgNLyy0xq2hd7XTudMUNbPXE3yobm33PaPYahuXZZjyl/DLkyPO6UhjLMqlByypLp/ZVUgn9KVVMF1p1HWV/B5b+VFqzPB6syPgCnPR3S39UWBpSh9fyOu8r41PcitjvntK/PVSnnvGdjShQrz+5Uh7UKsweQCW1I62S1GHwbhl2NEY/YWK89OJ9VhKD7VDo/HoDW50OskN3rXIu9pU4aWd2gBrbhS4LsxTqpQOWvkhKqeK28P9mXP3onHNu/+zRe+8fz/bjclGtggcWe3rrYWyApZG28cZO9VWUTcWPbOP6FqXUK75JRs/2rJB9YXaVl7poXxLd7BjSh6GMudV3ENj3lTRyafBepZ70dXvKd5HqX59n+b6D4alXc28d1Ls6yyueNlrjcNuKPe3TEhrm21OA9si2QONpWBavi91SZfxK48pmUlGIKMmdEwCXBjjhxG6V6xkBusZcTyG+hVN0v+n7ShmVFKZffStyjR1zkXo6GbeNet31eLYvNTIs9TpIQoZvgyG6rECKxrdqKi3PBk87LW67ZQOLc7qMPk5+S19qxKu4YWWnnrR1bVGVZbXZxtKBFfeAZV+xO4cNU77P3TjDpSUK0Yrfohy0XdRLZ7tx+Sws/HiVTYbTT49n+83xUK9NSfeCqJdRg57tNF5pyhipB2TjYeMdRzqnopaeya1GpV8yo/mOfp3ennyxTKHt2CfLxmt2evXimFOY6lta3Fet+lXSLkq99Bfa9rpeppdEPWY5xV2z1KR0iw+Pj2fpimxWuw0zXEVpWFqLXaaNW1axALI05UgG5wnjpBayTun2FusqY9Y5pZyNbEBKT32Gq1BPSTk9QY8iKQXrRj2awUkjtOwr48amH4v/2jHN9aT/LqTHKA3SPeZfAPUWeV+2JAafEg22ZcvSoZOGOTlXsrfJgqMbQOnY2HKWawrO2Fp6WAywZDcsv3SIFFuWCrN+LZPlYj7lZaZIPerD8zK1W+2r4uWFtIvif7dQuKav7fCwS9ArpJ4nud42iMKiSBkJMcZGJGhKVZRyHUzZRx2ybJixtVT2OZ3xal08V40tSzJOlou5krEphXpsdlnM7Ir7qu1UXbmbEYak3K71QiaYtVxMJzO9Tur5oWe1mWhew3Ikize2rJQbG9GbYsfGBmfl7BicIddLKyrUS+vqvHDChT8lgC5bRHM9Oki9O0duoeqjyrJaKdNkd52CfmVfWXLkVMY3KNJvWmYTtxSRUsvGf9MxPPXqa3bO7Z89Csv1/Qy3v7+/WL9UMWnnx6uhtqS9slNdRyGtq9CHbVZvXym31HXL2ZnjMj4axsZYBq9QwHF8MZ7A7EU3I/haXV5kaxULsyFJ/MrK9b8QaRV9X+mjkvaSnXqtPoZOLa9kbOfzehAEQf0J1IMgaFwC9SAIGpdAPQiCxiVQD4KgcQnUgyBoXAL1IAgal0C9/sQ+wgZBUM8C9fqQIy8bgHoQNJRAvf6EXA+CtkGg3sbFvlOlvOO1bV8VA0GvTKBeT2JfQVUyPlAPgjYkUK8PpfldVpKGbc83oULQKxaot3GxpKPU26rvf4agVyxQryexX6wUC7f2+58h6PUJ1Nu42K+HK+Z6EARtSKBeH2JvX7B3b/sbEwSNVaBeT8oeUsGzyhA0lEC9jUuf2AJ8ENSzQD0IgsYlUA+CoHEJ1IMgaFwC9SAIGpcW1INhGB6J/w+R+Qcm5v53rQAAAABJRU5ErkJggg==" alt="" />

注意:如果把空字符串 ("") 用作 separator,那么 stringObject 中的每个字符之间都会被分割。

我们将按照不同的方式来分割字符串:

使用指定符号分割字符串,代码如下:

var mystr = "www.imooc.com";

document.write(mystr.split(".")+"<br>");

document.write(mystr.split(".", 2)+"<br>");

运行结果:

www,imooc,com

www,imooc

将字符串分割为字符,代码如下:

document.write(mystr.split("")+"<br>");

document.write(mystr.split("", 5));

运行结果:

w,w,w,.,i,m,o,o,c,.,c,o,m

w,w,w,.,i

任务

运用split()方法,完成以下任务,并输出:

1. 补充右边编辑器第8行,以字符"-"分隔字符串对象mystr。

2. 补充右边编辑器第9行,将字符串对象mystr每个字符分割。

3. 补充右边编辑器第10行,将字符串对象mystr分割成字符,分割3次。

mystr.split("-")

mystr.split("")

mystr.split(" ",3)

代码:

 <!DOCTYPE HTML>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <title>字符串分割split()</title>

 <script type="text/javascript">

 var mystr="86-010-85468578";

 document.write(mystr.split("-") + "<br />");

 document.write(mystr.split("")+ "<br />");

 document.write(mystr.split("",3));

 </script>

 </head>

 <body>

 </body>

 </html>

字符串分割split()

7-10 提取字符串substring()

substring() 方法用于提取字符串中介于两个指定下标之间的字符。

语法:

stringObject.substring(starPos,stopPos)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAb0AAABSCAIAAABPKZ3wAAAOIUlEQVR4nO2dvVIcSxKFCz2RDMnhDfYBMO4GEXg8g0xxDWxMInCxcG+EZFxb3pW3srAXb3kDqddopqipzDyVWf03g86JE0RPTdZPt3o+sqp6RBooiqKoiNJf//xJ0zRN+53u/v6Dpmma9pvcpGmajpncpGmajnkzbg7DEA1zVqHpFTwMw93f/777+49h+DUeVMfyZS6R5fRxeRtuSgJaJfInTR+CR24Owy+52QrQmV8SnUftDbgJdvfVYPWYpre1J9/UahGXb8Fbrm8CDqpIBYT9vNPmF5R+87ZSS1ilkZbe8R4+Kq/NTZBsSiCWJfJAmvccvZqH1jw9v4VXPCvzHj4Kb7++ORhrl2WOCSLL+4z3HL2aMzer2TrYGlJJesd7+Ai9zfpmPpAAlTHqz9HVvIb3HL2aZXaJuVnupJcxvIeP0RvM0+9sYsp5ulp3fPlZaPOrSf8OLonp3E+30lLew0fqjZ97l2uaZXm16NnMN2l6NXfM0+XLO97Dx+mNn0OqytWX1lx+NO85ehPPxc073sNH6O2/Z6kytHyrfHmnoZOm17dnns5vB71Vb//cO4jJx3etrJOm13S5vql+k/JuP7X0PL9JH5G3zzdpmqaPy+QmTdN0zOQmTdN0zOQmTdN0zPz7QjRN0zGnp+cfNE3TtN/kJk3TdMzkJk3TdMzk5qxXM6HrmWwdwvDKGBDpHG0VZtUqy52dppT++7//LHqhTk5Oyi6ql7JQDRjLrX/xpU+BXtTk5twXdPcJbzJ0w7E1YzDCmtCXhRKjshG1zXI8+WcfdPwUi3KzGTMeVC/XvwHouUxuzncp94nTJEWTPosOD4xNLVFPyiqRddWS8qd13WRhNzdHO/NEHOMEH/PNt+pD5ubXq4/13fbh+uvWo7IvpYMvJZjky63Gpo4TNwKakn2pvauwlsFq2BT6YCaWpCszRLWihcUmi7ud/5vO5W4V2uM1uHl//elbb5Vv1+9TSucPPzJGzx/CA1j6bgN0wFXWcRKpHOgdc1zFRCaabLx6S323ed3KmHzQjSFnLmmRMRc2ewfJZjf0R5Obm3vxT++36/fpY4ybZZWCmy/H3Snnaty08FRiIu2nTmqb09nqJ1pFQBWI8oysluWxdWD9lNe2rFhlgiGHuGnVtVYqwajwgJssLu9ecnNzz83N758+vHzc3l99fyFdfnl/kT+MZ/dj/MPZy7sPnz6klC5uqypmvvlSMb1Ceb/rcTzr3G0WN59s0HgaBNVTS7hZ/7mAFjCR5UhUOOKLZkFW5RpGjz/7A/mmBG6Tm2q/1jaUxdZqtkRubu6ZuZkx9+367Or7j2/fP51ntH3/9GHMFh/O0mvauFvE/Pjp/vp9urjdq/JckjelDM3c1PPteUrp4lZ2/bTW3aZ+ttV3sUCbsw+1GWNFqnQLHeefHVcjv+zgZhmG1zfVHXBQ0dmgp0TlpvwbRDPeEnSfF8o3c8Z3W0Lw6fk1T9zn5muGWFUp5+nZIgk9uxddr3+3yQ88Dp6xtYmdSmZZFJtyDMbgH9gTnKd7Ju/R9U0/K51DssIA9InLQ/MS65u35yntuFZC8OvVx5QubrV8czdtf/7Rz82667XvNpwlPfk2VdYcIYjxYP3JgLufmyUKratRxuTCWaAJqqgonMjNiQ9vkpsH5fnn6ecPYh49QvDhbCTauMo5hZvWPH2/6x9PK95t4AMvSyo2HRc31TOtaAh+JVjc9F9bkG827X9Y3bm+iZt6mo+b9EF5dm6efRjXK3co3O0Fnd3v9m3Or8eDs/vnYnvn4jY3sqvyr/OPr7dsvY0u9oVk1+tdREfe9GRwU41cepzNGDUSD1WFoOSpeqGk1CpVg1EAdSw1Tnl+c7nnkOjNvdInlqZp+s2Y3KRpmo6Z3KRpmo6Z3KRpmo6Zf1+Ipmk65jRQFEVREZGbFEVRMZGbGyulbf4JPP2WMSA+dApVsL9Z3MvJycmvX79wiV/drTXDygAruPng54znZYX1dR295u/evfv582ezUA3zNOUJc1asRG5OEr6/s3JwWVEWrql5uQnOGvcrw6ym1AbzBxUcdGgdblrx6iksdF7NMCfo1QFnHr1796781yzLVWZF6daMzy/BQUjk5oJSoWAdrClAIot9oBx00SwEqJUvS1Uf5vJnWW5cAKSSAtavhGaAOlQ5qg25KQffZKWfm+NBxaby51ix5KmFOfWSVsHWlZdtqmMgNw9LCXJTav1R4U6bkVZ1K7g62WSAEkdWn3B5GSXU/KCx8DRLvomJjE9KjfSflGwBnGBonq5WzCWSVmqi14RXx1TdAnSWRLMfoOTmDJL/JLncilePV5DsDgwAj9NzdqA10GAqWJkjk4baUfLj2p2dWbSdl5shTUkw1XZkbj74cky8fDFeOnWoFj1l9qfKmlODTFPysYyXvI5mneTmDEp23hStu6gsDnbzvXnLRltTm8W11Hn6xFmtMzG0AtRggBWJMGeb3Sc1FzetU6hkrW8ONgrVVHTKeijOecnNDWQBIokMKxU5lKpQpx6VwXjMScOW2p3ViByh9dK6RLK76t2qTRWUqZiHdnAzVAVP5y1UhRYBNsk3rdtJnadbwRXvrLVFQD0AXBks64K8cmzZn/NWIjdnkAUIiRU1EtNnIXk6bSKyyeLqJYZvdSB/lu04d1c65ulT4kMYBZ12PwnkGWeTm+AE5SCti1ztp8u5eRIzaJBXWjQEjXiaHWx2Y5GbM2ghblZ8mVebcBMfV1fDM8LmpvDE9c0Z5+mDBi95bJXgcs954RWMfLnw6ajstmo1801LeIdHIlXtTo3BY/NeTXJzFsk7JpfLSHksw5rvTpenWXW0oBH/y+YpRz+31oM7VirnpE+UaBjW/ueKotz0nFR0rcBzRmBUON8c3Iue0WeGQAyYwluotZoiN2eQxSDAzSZAt+Km+gvAKpcDBnCMUrhZPqpEhmfuuQQ3nftRfdz07Mw4Two01VxSaE7YpfBz7wCIHc8qNbPOkoMgn1XjpcjNBWVxUy2vOJULVxsbjsHxkrAdrVmctVBeSgVH92wXrNzhko7Z9yzcdJ5UlW9WF7Z7P92Zb1bHmJvJfmq97EXiUq2O3/Jv02eRmwtKBcFyKAxpLm4CSqq/BgD+ADfxOFXMgXk6nnKm1iPo1bs4a7N4hAczC7lwg2B9039GZaFU86lMKzi0vikbxAHRPX1VB/EZ1vR4c1r/M5zePG49Kq8kHZLIyFStOcJQjIz3DBhcAaspcHFKlUmT+vmP5muqOrDbfBfsvfTtzISgGZWnbjPfVOV8MDPBpc/ymjRn8TiBDS2krvdB/XITxt7Izssv+XA8junzTuGaFEVRmlbi5uPNaUe6WHDz5bg75SQ3KYqaS8tw83WSfXrzWE65T28eh+HLZflqyAWnpy9xu6zSzDdFC1WPo0pWkpsURc2lRbiZefd4c3nzODw+3lxmoD3enJb43APh5ZfdYRH7qpdYrYWqx2E3Pc9DIjcpippLi+abOfV7ZaFIIUcYCliKiKrt+v39Hj8LLXKaFEX9llpuffNlLl3lkEtxs+6xzjcPUCm+e55T77k6VZsytnBf5WzcP4xZNP07iNEGo7vtU8Y5/ZuXni8FqOVTtuPfqpaap19+ERPq3nl6vYduzNP3exyGtebmKlY8oHECCLfTZBwGZZRfON7ZWr5Eoa6bwt+lqeR8jsfzsGfZYNXXRNI1a1kPLXn6nYWb+Kmp0De+j0sLcfOy2uLZbeS8kjGlcgtnhGVZaW9ts95GFy3IHldW2n9IO8EnH61C0GAzzBMgg6sb3d+UWl0qOp6Qmo86Rh8yDz07CR4UVZ8V94wTYHfKt4+s6tZJ4TH7f+WQm0urSDKPUyn4n/okN1itFjzvVu2UknU7OsItyCqekm45n0j3HDR7cX79Rh1YKO+zvg3pQTzAsfVlIYv7Hfk4ubmCjpib8n4dWtSLAkvtoqprxagjqRppDsN6K8RNZyMh9aVFFiY6Vic9Sd8UboIwf7PVcTIycbnsgEc4tPA9hZtXV1fjFsVhLq0eBDfztHujSfYMqvCUtISuilRfNuMHQUDcrMVNT0fNEYLPTMXufEHUmDI4JOf3u2WnOL1Sx+lfrJwyT7cI3pxoe5r1DBhP1VfeMrq6uiI337KSxs3BQUm1pOSIs8FmeWrRNtlok8IXoVvO3jET1U/4IKjkTzO7F0Y79oX6cmH/u2qDoYwb9GtlrCGVrCQ336xUpqQWpKwSUEu2DBpXq6vgA8NrlntkneAsCj2dY81ku5HUne1iwuJVBdlXMv4vqCpG9mX9IvELT/A7NE7Pyc3fRYBuKu/UEtCgVSXETbWdKdz0lyyEV0++GZ2nV+3jpb3mXNg545aYa+47ladZxuD2QZpZ4a9jno4Biv8n4KFY08w6TGgO5OYswpRUodAkhQU+wEeVRPIgOiR/uacENNihefNNf25osQxMgcHYZLynVi6vMOdcvoxeLlDiyTedf3G3yjcPVuTmDIpy01/SpF4Hf61aHdz0CLQ2HaB965vOcvyWs8HoPB3sVqn7QlPyTXwi3ZlyVvNPX6g62Ll5KXJzqpKWAOafHkSCdqJvgWaX4Ga0xH81nIrmmypVl+amnz54jRLnm1Y7zfHIgOT7GyEy2awubPOvXxyvyM1JqmCkQqoKwCqre5gSalMWWufiKY9GNkfYoWjGt36+uVAtdVau4m/YvwLqRSgJ2FwXBgOuSqJ/XPeIRG4uoj4WSFx6aOgcSYIJrEXSENemnHVUHfvUoBGQnIYI2FcLy9kmCMBprFWxY74/iH8XcpOiKIoaBnKToigqqvTXP3/SNE3TfjPfpCiKioncpCiKiun/1D9flASLx54AAAAASUVORK5CYII=" alt="" />

注意:

1. 返回的内容是从 start开始(包含start位置的字符)到 stop-1 处的所有字符,其长度为 stop 减start。

2. 如果参数 start 与 stop 相等,那么该方法返回的就是一个空串(即长度为 0 的字符串)。

3. 如果 start 比 stop 大,那么该方法在提取子串之前会先交换这两个参数。

使用 substring() 从字符串中提取字符串,代码如下:

<script type="text/javascript">

var mystr="I love JavaScript";

document.write(mystr.substring(7));

document.write(mystr.substring(2,6));

</script>

运行结果:

JavaScript

love

任务

运用substring()方法,完成子字符串的提取:
1.补充右边编辑器第8行,从字符对象mystr中提取World!子字符串。

2. 补充右边编辑器第9行,从字符对象mystr中提取Hello子字符串。

mystr.substring(6)

mystr.substring(0,5)

代码:

 <!DOCTYPE HTML>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <title>string对象</title>

 <script type="text/javascript">

 var mystr="Hello World!"

 document.write(mystr.substring(6)+ "<br />");

 document.write(mystr.substring(0,5));

 </script>

 </head>

 <body>

 </body>

 </html>

string对象

7-11 提取指定数目的字符substr()

substr() 方法从字符串中提取从 startPos位置开始的指定数目的字符串。

语法:

stringObject.substr(startPos,length)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAf4AAABiCAIAAAA+3ib+AAASM0lEQVR4nO2dsXLkuBGGMXMvpGCVcO41FNilqo1EhQ6cKNxxsOlwMlVtupHSs6jA8Wa3mRWsJj5F9j7BaeiAJNhAoxsgZ8ThmH/XX2cSBBogNf7QbJBcs9lsNpvNb7//A4IgCJqJTFVVVVX99vs/vvzrLxAEQdAcBPRDEATNTkA/BEHQ7DQt9FdV1bdaYhMImrKqav/lX3+lG94237UlvByCopoQ+jnEpRL+Xwg6a1mIV8wU+gcnDAhK0VTQz3/x5KcfqBzchqAzVUrUr7SCoL6aCvqtFJQHZwVlkvjU2slPCoIk0Ug/kePRm4Mv+PFDMU0C/UrIz5lOS/gGF3790PQVTfjYQ3r23xN+/JCkSaC/Fk/jcKDTSF+pSX/x+PVD05e3YCsl8b10kBTvB7chiGoq6Kco53MArxP8by3vPhe/fmj68jgeRT+dKmgd/PihRE0C/TyW/yInc4K7tvATs5NfYghSRKGf+ISPdHOAHz+Urkmg3xPP79NybwEgGvVD0PQ1IOHDd7/gxw8layro50y35cFdKSlUC79+6Lx0LPR/wY8fStNU0O8pOA3QQ3T3S4j+EHRGSnmlC+/uQkfUVNAfTOYE69jtL7HYH4LOQjXxg1iXXvXSlwQgKKqpoB+CIAgaTUA/BEHQ7AT0QxAEzU5APwRB0OzUoR+CIAiaiTr0v/58hiAIguYgoB+CIGh2AvohCIJmJ6B/3MttjH5UsnFGdZROvYZHGbzuZLFY/PHff0u7Ss3Brmh5sM5isZD+lPoA0scmVQh2TUebOKSUc9QrQFMW0D/6FSecTak2uBfdokPythNnBX5IqpwyKsl0OqegnxJQ8ZaCfn0MFsd0d/CfVfGTeB3SG/L/Bl2lzyXQpAT0j3itjXmV0d8L1of0K1XgY5DqeDWlU+CF0UFKJd62FMMqWB/A+kTuB3X0qF+fQtLnv2NF/el3WtA0BfSPeK0FltESi8jgbt/uJFPqSCM0bMbiA+Pb+inrhxTPQSTx+LRXaOzNDYofJdoNYvQoWEzPrkQTPlGI87Z84gxeN+kK9NJ6vcYsMoKA/lGuch8OJlZI7JT3zj3TQ8FpwDuUclJBD73ONAhWBWQ1g9LzMJI3iey0YTTnrgy+LxxTpjSppnSVouOhp8lvNYJH9bGlC+gfR0D/KFdZgK+EV9qEM5RW1juVLDi8lFPgG0ZGv36yw3r3FASihCpKOj15nbikOWxhIFhBmQ+kVI/Ue7RmVHTyC65YKNc2PJEsF8aYP/4jjoHiHugfR0D/KFdZjrtTwCc5TGwerUPnG2mS4IVB9EttvTHrllJHYnrdRTT+jaJf8qw4iWZOjJoOSozlo5OQhP7EexHeKrjY22PVYbmooW83PK3X60+fPgH9Iwvof/9LLLPytScQJZ/BTlO86c71Hvnp6NvKUKOF3q6OvFc5SlUaBpHHPUc7DVaTSqRzkY6m3GckRv3RBQPe0bCoX0d/zX1q4P44AvpHvNYMsnrlo3gbgPXoZCNNPBL69TN6D/TzEi+JoQSww9CfAnolrufEHFYnmhpSkmC0I6/8kKj/NZbw8aJ+aBwB/SNe6xiFo0H6gB51HHvlUnguDeZd0a/bYPQHGZeYQpHc6r0PzrlL5xI92eD5Rges15EGkJLrjwpJnvEF9I91oRnBFTh6CB6Mftq14iSK/sTK+nTVF/3KbjR09arRmtEsR3quXyl5PSr6ecgfXWaI5sGiCR8+Iw6O+qEJ6izR//WjHwN++Px08lFpVznh6clXgao6tZUeeS/Bfm0J7U6ZLYLE9zb4tuQq8eykOgrjOLleQyGqJXvfXL/uKniI1kn/UybOc8ET9wYsZXWow0Xygz36Rej7i4VG1knR/3C3/j6s/tP60hhz9bXbNtcP/Xq3y0on/xtAEASNrNOh/+GqZfeA+vfXxpjLu28/n1/bm4C+6K8F9EMQNEONh/4mS3N5t/54dd1lbC7W35/byP3iw2WXuvn2+cJ8vH99uKrLnfrf7z7YJM/DlTH2DuD52+eLpuLHe95vXYfiHuiHIGiGGgv9Ftbf7z5c3n37eX9NEvRfPxpzefft+90HG7w/XBljrh/urxvcO/U7vpsG6yT8v1h/ryu4k0TT77OX5AH6IQiaoUaL+t2MfEP259efDZ2vH+qNizabf39tLq4/XjW7tD5BvNPFw5Vpp4evH8MrAZ+YnfwPAEEQNL7GzPV3a7NdVN5s28I2m09TOm59d423E8H9/TVJ+Hj1QXwIgqBx0P+0vrTpl4v19zbD8/P51c32WF4708BPp763xvvK6rghv9NvXRPohyBo5hoH/ffrz/d14uXD5yebhCF5eWMur66bwquvNb79sN0Yc/G3v5Msf1fh+fVnc6NgnFnB6/f0lxuCIGgKOstXuiAIgqBDBPRDEATNTkD/eMJjRRAETURA/9gC+iEIOrmA/jGEl8ggCJqUgP53F94fhiBoagL631d4fxiCoAkK6H93gfgQBE1NQP8YAvohCJqUgH4IgqDZCeiHIAianYB+CIKg2QnohyAImp2AfgiCoNmpQz8EQRA0E3Xor2AwGAw2DwP6YTAYbHYG9MNgMNjsDOifkBljoiXDHBrXjuIz5WhKX0qddG+LxWK/30f7Glz/uM0P8XlI18G2i8Wi/lUMcEsdvsc1mZQtl8u3tzdp95280XKljhHszz//lAYA9L+7SX+VIIgprKujop8XBsfWy23wEHUlOU+5GrwXpV+POzXOeIlkfZkVxZzSndfQuuIb3M9+v6clg2GtO0m/VvNBP8duEMQKhfXmKehXOq0L6w27+8svvwD9EzWFZd7v5kD/ijfDJhteTQEBrcldSadp5KlIGbAEoMrlJj9ayWAdRiudzkovfIryDtH/8kJ6akcP/1OORsc/bDxVebtc5I9vPZs/3S7txb95fNvv26Js88MbylPTwaABekC3nPVKaP2UUL1XnfThUQP6J2qciV65VCHFc5Ce3GcU3NFhDBhkCvq9QlrCKRPNWhwr6g+G4Rx/KVG/fqfCZ4LgrJA47JSrkQLxw9G/227LY9wc7LYrCvOn2+WiBv5uu1quGPr7Ot+W5GQ4pnVwR4/aa667sn0Ff0iHzBYV0D+O8T+bLed1vIYH9hscgDQ22uqQrqNnIWFRuTK0eRD90QzMsaL+YEie2IuSbQ+ORIK+VF8ftkW8fgGDE1hwvul9MYdF99x229XCi+Jb+L8cjH52h+DR2cNuX/RX7vzByU7vKqIcV0L+2qTAH+gfwyQUBplYCWTkNaN0TsE3H4yE/pRRKSfVa5CGRf10IyW4psBSmvQCMXd1YNQfHblyk3HIvKWMnJ9gcIOfvjCe3XZVn0O2eXnM2/O5eay3s83GltkKpOZNM01YL03NTe6T37L/pVgtV63b7kZgYXNCVVXttr8uF8aYbPPjbd/tmmzz4620WaSbfzb1gyjnG9Z6oT94SOpL8Rk95BnQP4aZnuin2zoZg0dpNSPMJV4dWqj0q5xUtEfqXzdex+tUCVolIPZ9fiYl6aEDNLFrvYmS6+dtU+4GlLUE5SJE0R/0U1VVVd6uipf9vtptb4vdfr/brmzUX+O8hvtuu1qsNi91hYbSla3ctWruGl4KFvRXbabnpVgta7d7kvuhkfzT7a/Fy1tduCp+PObLVfHjbV/ttr8u88e3ffu/NOqnv0Yp+RMNwIMNJedVH/QHu1YS/RXQP46Z0dHPoZnuSuk3xZV+Uom7/DrQ7cHo13Pc6X6kmkovSo9KnSBeg36qQeiPXszgeLgrEf0U5c0uRf9q87LfVx76WWFV3i7bGaRuXwZWbZ2o/0froYE4QT9dHDbm5ubG9xRCfzCKl4L3xJWA6LKB3q/Uoy0B+k9v/P/YtpzXDG4Ea+p0DjrhrWgdaWA6yIIOjcDuxF2leRXL9afE0borHaBKoiPoXMRi8miljH/fOwxp8NFrEjyUhP6qqmh8PxD9dbi/MMaQuwSP2G2IT3P9EvpvScs69H8bgv6UkpRcfy/0R9NEtgToP71JjJbQHyTvIf3q8wcnuN5d4tFDJpJh6FewqOey+1o0Sx7sRYJ18CIMyPWnnA6d2FLOQjrx1LZtwqcqb5e3daZmUNTfeOlst121z/RUlfCET0d+L+FDtp+2NHn09PS0DyZ80tHf94H946KfbgD907VowHss/yme0yv3nRiGRf3BOam2lFDdKxmQFpeMTzOczlLX0Xy9V6hnk/qOX4/NaTVlYu6LfrtoapP1C0OXd7PNy0tRL+JmWdZ0cvP49kji/EcnR5M1U0Pouf6qahd13UL3qZ0nZ1R7b7c93CwCy7n+2gagv2+uX/dWAf1nZBxq3ja3YV1UaTCtQsTn1VIGEzyRxPqSE89h30QHx3RwN8WkjIcyjOjYgn/uXnH3gJErPUaj/sSlguNZud3uWpe77YrdAsSNp3V6mJJzHwDrvrl+/bn+c3u4c1dkxhiTFbsjOi1zY4wxeXlEnzAY7MRmF3mraij5/QQ/7HRR/67IjkbpsmimkDJXppNPrR2lTxgMNpZ1aaMu25NobTLnBuB37WToVynd11EzhZR5POgH+mEwGOxU6N8VmUv+JgVksmLXbHdbLc2bjE5jWbEjBVmx2xUZaUW8U9wD/TAYDHbKXL+Nz9t5wJbW4XtRZPWSf162TUxeVg7Z6c1DvV02rdpSL8kD9MNgMNiJ0E+J3YK/zNuF324RmFDezgv0ToCmeOq6Wd7cDORlRfL7SPTDYDCYtdOgn6Z7uqSNTdF06HZXBGxVOmu4jni+B8Sfsx3y/D4M9n9sp0E/WZqldC/zLqzvkjx1xV2R8RVc/+YhNF9USPL0MXO8F8qmYBb9id8qSKmW8sZTurfooV5+YLBEOwn62yVd0yV6yBP5JGi3h/Kya9Nh3ZY5qSFaOuJJnY0FgUWPnnBsRzfppa0D0Z/+iZvEhlG3dGrh7w9LPmEwyc7kbd5dkTlYn+9rW+5TTsMvBEe8GfwZCXoT16+Vdxp1EZ+yh3VQVfLHD4KfQ5C+zcCrBadPyb/Uqe7HsE8mpHy+DQZLtPNAv/MoaJmffzy/K4peJKP1SeqrnRH7mgmF+Sno7ztu2Y/zQl+XomMP/fb37IxQ+ZSmVyH6YTLJZ9BSvvcw+CbgcFuv1/UaGCaP2dp5oN8NEf8PwJ/1imHd+s2KCNtOtWCAWaWgf3jw7VrgTe4W/geiv8wXJi8JzaJfbZM+7xNsLhXytgM+2Ra1o2f81+s10D9bOxf0n7F1qxT2lQXjP85Uv8Vg8rKtXS9ukLfWaH26Qt5u216ctyW8IteC8b6LfrpuQtdk2sxMQR/PsumatiYbm+la+WNq2F+fdeOWPNXrPsJrjMmKl26MzT/wZ7/72OFfwqWUNlG+x+nV0b+g2evGgs/EifONtAStAJ3iHuifswH9725l7oaxJIYn4a/7PYo8z7M8z9rHnNyYn0CUTB/sQSi/X2Yu5UPob13sirxdaXFx3nVKl2Ls01nuRjvM4OebGh/ELbkBsOdnz6nMFzX87cauyBbN/MmifiWzH03vcAveSfDpIYjyaKpHB3riFzcl/3WeB+iHVUD/GOayu8vPO8+rdsF8mZssc1L7BOGhDI+z+EEqCHklzg4jRf1uwM3Q77+UFy7sxte2DyWOnKh/53XXNnDXuPNyX5X5gqJ+V2SLSMJHonD6UzSDo37eqdKKdxeN+nX02/y+NXB/zgb0j2JdBN6RnFLcCdZNXuws6/uR33/7QY3841G/9dm9Rz0A/c5Dutajex70Wx4q+r3Tt0G/dZOMfqmEl+tO9IeFlE4Tn/DxmkSXoINTUW1e1A+bswH972o28G6hRThtOeZ8o86jmxPRhx/ocSaTLr52+w0Zp7xfSPIrbaZmUNTPRu19YC/4hI87HXZv69mVjrJsEv0t7MtSSPhIu8EKhr0CprC+b9QvlUiF/OiBD3ciyQOrDeh/V/O/UkH/iRqyhFrY59k9VHtfMyKRc7AXmj5y+g0ahRctDA2ffDLJWd4lI+tWWfPSGRL74KrvnJ4TWRJ2H/50Hv2vDzfAzxddSbNj7wSiyRkv4SOtvupRfzDbLjXnHpRC5Sie64cdYkD/7Izj3jt07A7tv6RTDX0TYfirHDqmOZSlmilpFkp5pXlwJgjOEMp4ovVhMN2Aftj7WkLKKsXHwPcJog87wmDzNKAf9t7m/oM6g5oOfpEM6IfBggb0w2Aw2OwM6IfBYLDZWYd+CIIgaCb6H7Ef5YKq4BBnAAAAAElFTkSuQmCC" alt="" />

注意:如果参数startPos是负数,从字符串的尾部开始算起的位置。也就是说,-1 指字符串中最后一个字符,-2 指倒数第二个字符,以此类推。

如果startPos为负数且绝对值大于字符串长度,startPos为0。

使用 substr() 从字符串中提取一些字符,代码如下:

<script type="text/javascript">
  var mystr="I love JavaScript!";
  document.write(mystr.substr(7));
  document.write(mystr.substr(2,4));
</script>

运行结果:

JavaScript!
love

任务

运用substr()方法,完成以下任务:

1. 补充右边编辑器第8行,提取字符world!。

2. 补充右边编辑器第9行,提取字符Hello。

?不会了怎么办

1.字符串中第一个字符的位置为0。

2.字符串中空格也占一个位置。

3.  mystr.substr(6)

mystr.substr(0,5)

代码:

 <!DOCTYPE HTML>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <title>提取指定数目的字符substr()</title>

 <script type="text/javascript">

 var mystr="Hello World!";

 document.write(mystr.substr(6) + "<br />");

 document.write(mystr.substr(0,5));

 </script>

 </head>

 <body>

 </body>

 </html>

提取指定数目的字符substr()

7-12 Math对象

Math对象,提供对数据的数学计算。

使用 Math 的属性和方法,代码如下:

<script type="text/javascript">
  var mypi=Math.PI; 
  var myabs=Math.abs(-15);
  document.write(mypi);
  document.write(myabs);
</script>

运行结果:

3.141592653589793
15

注意:Math 对象是一个固有的对象,无需创建它,直接把 Math 作为对象使用就可以调用其所有属性和方法。这是它与Date,String对象的区别。

Math 对象属性

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgUAAAENCAIAAAAQRYGqAAAgAElEQVR4nO2dTbajuLKFwSOoydjTKZiJ3UjcrHGkcirv0LirahhptW731muAhZAiQgFGGPnsr1ELi0ASkZl76weK6r///e9ff/317xxjzL8AAAA+gl+/fv3vf/9LhlX/+c9//vrrLxOxQxcBAADswK9fv2KRj6n++usv0g8AAAB8K6rBPYwx/4CtQVYBAAUBP8gIsgoAKAj4QUaQVQBAQcAPMoKsAgAKAn6QEWQVAFAQ8IOMIKsAgIKAH2QEWQUAFAT8ICPIKgCgIOAHGUFWAQAFcQg/qESCSOHn0YAfgM2p6/rvv//2D4Ly4dj/F/T333/HJe/pPTg2R/ED5Sn4AQCxJcjeMPhBULJ7r0EBHMUPls4PhgP4AQAx8AOwjqP4gfDTL3QOIXjGwPVJni6rgB+AfARLQP4qEOkHwnrREf6xgCNwID+QJwfBhEA5P4AfgE9ikPV1+wfJ+QH8ABzLD/yf/8zl3o8hAxz+X2v4Afgw9HsG/jF39jj/WMAROJYf6OcHfqFPMO2FH4APY7UfxOtFh/rHAo7AgfyA+0meIm3jGpGvzxrgB2BzfD9YtH8QlBztHws4AkfxA4EgUvj5TzTkeS/wA7A5vr4LcwXN/sGh/rGAI3AgP/B//qNbIEruH7wX+AHYHHJLWVg7iku4/QMAjuUH8cxghR8cB/gB2BzSA+JFIfIS8icAjvf7Aan77hRpAMllpYMAPwCZIGcAFfU/oiCfQ4UfAJL3+8EHg6wCAAoCfpARZBUAUBDwg4wgqwCAgoAfZARZBQAUBPwgI8gqAKAg4AcZQVYBAAUBP8gIsgoAKAj4QUaQVQBAQUx+AAAA4Dsz+YEFW4OsAgAKAn6QEWQVAFAQ8IOMIKsAgIKAH2QEWQUAFAT8ICPIKgCgIOAHGUFWAQAFAT/ICLIKACgI+EFGkFUAQEHADzKyQ1arqiILB16vLVmJC+B6kgwjv3a3rv85qOv68Xgozw4/5Uvkmv3CZECye0tvQdnzdfWcTqffv39zP/1y7u8DGQ82BH6QkX2yOuimLKOC5vrxcWFSnYPLhe7JAcraXsR9MHJg0G7/Zxwv66O7fAhz8Stk2vcSzlc0JfFtBgSqLbeo6XlcyPmBr+yB7nPe8C4PeGPTbwR+kJE9syqrp3C24ofw8YG+ZtmBBN3XNLqaWLNIBRf0lBybCzYQOxDZGaGHclWkny0a5i+dHyhnLYHWO3kdDoKfXFvy2V/taWjn/OP/oh7198tp6oSL+NWe6ubn72e4WMU3tITj+kHfncN/i+euf3evFrGzH+g1N7hQXw8XEAcLLdq56Gtq2wpyfkD6ASmLpOoFkwy/cvLypKz7fSO7aiMzS/Y/mMcoW+RyyM1RyEkGqapKqZXCTNuax+Mxavqfk8Zba639db/3z4L+3t6/XGRVuVhnDv39crpEjrChH9xut+v1er1eVy/H7cNx/cBaa03jm4DpQj+4Ptm9ZypyZ9UXzVg6K8oPYqmtmOG5UEJ2QA6I25X7Kbe7Gv38IOkHiy4kz3Kqzc054hkMV5tgPHGXhBaTt+BXEpvWgD8VIP8+VPzGgFKRf7WnSxeP70ecHQw/LqfG84Pxuv5+uXRfcQ3bThFutxv84AX67qyYFHxbPxjw/SCprcKB+5lUcLndOCZZwkHfcN+dhyl+90UH8OjnB1yXhN1jcnQsr/+QtQUCLRuPcFa5NS20SCZQc8o/XjQ/EDxDcI5fLSnmAzM7mPuB/dWe6vOP/3sYroKkHwwdFmJ8D4AfvMbkB33XzHzB9wD4gY30PVb55AH5kyyJGxJikipfLZsfmGYcIZimnjlCPGSOSa51cGHJyy0vppysC/pO7vFy431O/ZMrSMkWNRkQ6g82DFYIvW54/uu5ckQxt4PAD57bDOFqk7IDyV2QYZkIfrAR/h6CN08I1ojgBzalpL76B7oc+0FSwa3CV7h48hQHEW0aP6AxxGq+0A1BKNftH2iW7zV6rblQbi65XuTQzFHWrRdVc5dK7hhrRt9JPxDdILSD0A9+ta15fHWXYZoQV/KKH7g9A8fBzcCW4Afh/OAa8d4+ChxwfsBdLkTKJYIPLRP6VD9HTDMzgTny8r2l1H/1epFy9C38FFrUrxeRTSjnB8kW1yU5IOv8oL9fJDeI7GDmB95xOG3QtW5T60XB/OD4lOIHMw5uA47d/KCiBumCUgeX+/UkRbwS/UPTgfgSucU5ppmmBbMEa3SKWxsJ5hb6VRENi2YDltf9dX5ArgspWxRuhyyvqPmZr6rKV9K0Ad6+gf880URsF6EfjE8VrfaDJMdfI/I5th/Mny+alo4PvEbks9v7yYLcuzC97CqNJBlA1sMLvao5a601zXNky88UGJR7p4vWi+Sphqac7B5Zv/+npvGDKtozr6L1IqFFIY1CJQGCB7ziB/P3C9z7A7P3C0I7cG8buA2DuETR9AdzXD8g3j8o7QWEHZ439Y8FoddLsPwzefnSMNmolJXrSQ7SXSHXH3m0nlyGCpQ9WC+SB/LCXIHsWLKHyRbXJ9paK66luOUjYWtBDgA5OK4ffADIKgCgIOAHGUFWAQAFAT/ICLIKACgI+EFGkFUAQEHADzKCrAIACgJ+kBFkFQBQEPCDjCCrAICCgB9kBFkFABTE5AcAAAC+M5gfZARZBQAUBPwgI8gqAKAg4AcZQVYBAAUBP8gIsgoAKAj4QUaQVQBAQcAPMoKsAgAKAn6QEWQVAFAQ8IOMIKsAgIKAH2Rkh6ySXxDL9HExfTde/KoaWZvydpLfv3zxy1+aqpLfxbS6T7ABsDPwg4zsk1Unl4INZP0mZVzDIrkXehvEa7oqfOJY+XFgrqq4UP6yvBN3+bvHQj078MamwQGBH2Rkz6yulmDulGlG/ZI/Wk1aC2k2SkPS2ICgsFvND5L1cN0IvlRMfs1Y09Yc09Z1VVXnH19kXN9d6no4/fDCq6r56b4sP5Q8Cxa1Dr4L8IOM7OwHgs4u9gPTNGY8qKqq4e8jboVrl+tD7AdVNOMhnWPAyS4pzcHlQaSgg7FKckLPxcvlS2L67lI3Px+P6SA8W8+MwrR1Yx6PwQXO3dej79qufzwGnwgr2NAPbrfb9Xq9Xq8wmEJ5vx/03dn9+5x05zk69QanbsDaGPXo9b3kzqqvkrFWkloca6tgFQOmkZJcRTOAZB+U/UxeOJDU5cEAyMG7sk6/HmcqnFtYyodkB0ooct9dLt0o907qn8QK39890zBtfem+ptOmnf3UdWAht9sNflAo7/cDawd1JzTHNIHg913T9TY9er0+ydhnBTvvH1jF2Fw44DCN5LnKVuzC9aKghiBGWP/h9g8CS1jhB3LTi+YHgmHEtjGbFPje8DzX/TjXdeWWgmZ+MPthTduaFYbk9ZkL8z0AflAux/CDvjuTftB1pjt7gv/0Az+GH71+Qz+If/qF8gGD8162dVLZZX8i+0aWkLdj+dV5UqOX7irrxZ3sgF7r5eYGQj/w9L3vLnXT/Oj6cdVoOGPaYf3oYf35wXNLwe0xqDtA3qbPsEwEP/gAju4H/bCeNJ4k/WB2oe8B39MPrKiwsXbLfpBwg9SMZIUfyBU6YlnnhF544oi7qeSgnrOcRRUqzwrzg9kpb+XIbSdX1XwHub9f4g2E1/zA7Rk4YAblcnw/sN5yUuwHM70K1oi+px/I8wPucpK+OyfcQO1DVrdepK/NKoReeP5Hr4BK8s0PpP2Dcfjvh/n1hLsHcQX6OxXWi4L5ASiXIvxg3HRuTOgHvhtcI7J3O8VufkAO9jVjc+mUN/Oa/iDEy5N+sKwDIotmA0H5K8/8cLKo2cZY2tYT4fmiaVIQaj89FYjtYJvNZKwRfQaF+IF7DOk8KwlGrwexAcdu7ycnJVUescbx/kNflfgQl1zVCj+oqOlOHMatYMjPF1n1/ICsmRsgc+0qHSjdmfH9Avf+gbc29DxVzRaO/N/Tywfx6wd4+QD4HMMPwueLxqFpMCydRTGj12/lB1VqNYaMFCp5vQ9Bf4LIpCGRx/EBt2k81BasF3HLRFtJYdIngl7pzwKwM+/3g2Ao+hyQdg0xNh3Xi/Sj1/eCt/wAAAXxfj/4YJBVAEBBwA8ygqwCAAoCfpARZBUAUBDwg4wgqwCAgoAfZARZBQAUBPwgI8gqAKAg4AcZQVYBAAUBP8gIsgoAKIjJDwAAAHxnMD/ICLIKACgI+EFGkFUAQEHADzKCrAIACgJ+kBFkFQBQEPCDjCCrAICCgB9kBFkFABQE/CAjyCoAoCDgBxlBVgEABQE/yMgOWSW/dhl/h3J/yK8i6+Pls/pvIFvmu5gbfjhTU1XyI8+unPukKD6oCXYAfpCRfbJaPT9AL9iA8O3iHLYR17lI7skAv6v+N5OTQklqcfxfuRKyqrhQI/RDi0mtf+OX7t/YNHgv8IOM7JnV1YIrXWiaqmpMVCR/s5o0G9J+lBblVzIcxIIlKOxW84NkPVw3AvdSmpl81rRjS+cfX3FQf78Mp5ufrorxivOPr6HItGNnXYm+dfCpwA8ysrMfCKq6xg9G5ff9oO/Ow293kKiwes5dhLPJLrl7Ie+R02hOmuPLg8E7fVeMCZFCz8XL5QvCTNuax8OOIu+JvrXW2v7edv3jMZwdTvb3y3D0PJjVUP/5M2xpQz+43W7X6/V6vcJgjs97/KDvzu5f4CQrowD5Y89nkYtaNWJ9F7mz6ut+rK2k8sZuIVhFKPt9d3ZZNg1nCFU0A0j2StlzV7hoZM1NJsjBu7JOvx5nKpxbWMqHkg6kVGTT1peOmCKMJy/d1+ACw8FwQWP8iscaMk8Rbrcb/OD4vG9+YBpSw00TaHvfNZ4GzR0kOWK9Ptm+/wp23j+wipG4cEAwT+rsl+8NVH80zXESSVqIX4M8GJf9wJ89CKP7AOEs1/TS+YHgGYJzmPbS9XTH3BzAzQ7s8GMu/0/TWHDLfoeFGN8D4AdF8D4/6Lsz6QddZ7pz5QtPM3OHFSPW7+MH8U+/UD4gkP2ASTen7LJjkb0lS+TxeDzeJzV66a6yXtzJDqwQet3w3Gl+VO5tDoR+UPsrTFwN2gkTFzYsE8EPyuKIftAP60njSckPhBGr7wHfyg+sqKexUq/3gyXzA2U/yXLuEuHBIa5EeWGMvF7ka/om28WaACto+UB/v9R18/Px1bHzA6GGV/zA7Rk4YAZFcEw/sN5y0hI/eP4I1oi+lR/I8wPucpot9g/ksxzK2pRLQ9w6vn69KK48Se75Qd9dGskNrHWbBcz+QX+/cG6gfJCX67yN5gegCA7rB+Omc2MWzw+uEXlvhGc3PyAH+5qRuHwqWhRa+XyR/my6SzyLZgNBuVL+hHV/zaOomqePtAHevsH0TyYOGrU/er7IzvYNzP3ei0lbB9aIiuPAfuAeQzov3j94rw04dns/OSmg8viUvsY92xUkvAr/TOS2yA7Hx1xMfI9V9GjQALeCIT9fZNXzA7JmYYCcfOJotR/03cWfcjxfQRgfL/2aznr7BM9XEoa3DdwLClMNXlN4+eDbcpzni0xz7vposBNGqUes38EPqtTaCxkpVJKjV0EPg8ikRZHH+k3jobZgvYhbJtpKB5M+EfRqaQAAmXj/+wfTIKXrGnfoO0D4vGm1dMT6LvCWHwCgIPB+ckaQVQBAQcAPMoKsAgAKAn6QEWQVAFAQ8IOMIKsAgIKAH2QEWQUAFAT8ICPIKgCgIOAHGUFWAQAFAT/ICLIKACiIyQ8AAAB8ZzA/yAiyCgAoCPhBRpBVAEBBwA8ygqwCAAoCfpARZBUAUBDwg4wgqwCAgoAfZARZBQAUBPwgI8gqAKAg4AcZQVYBAAUBP8jIDlklv3YZf3Vy8yb2qVMIW/p5ej2v1EwGb/hJTk1Vyv7X/geU5+A7nd8W+EFG9slq9fzcvGADwpeKyQ8Uc18wfr2fcp3Kfsqfqn+FF2smtTj+77qeWLUf+Moe6L7GQt7F6XT6/fv3u3vxrYEfZGTPrMqqLZzlZJr0hhj3TWvN96uTdWq8hxzMBiKYrISElM64ZkFht5ofJOsReusfBD8XNUdg2rpufgqRpq0v3VcQYNqTV2ja09Dx848w0MIS3s1OfvD86H1VVVUTN+VEJT49XXnu+r5rRtWJZchvYoFE5WRnP4jxzwoXyseSRptm/OMyDf0nK3ZP008yJpDXrRZk4nqSNbswUpqD2wwiFwk0J/TyXb9iPyGmreu6qv7k/aC/X+o6lPl5oWlb83jY0Rb+/Pk7qGtDP7jdbtfr9Xq9HmHqUwo7zg9MQyp03519JZlF9d15+uX94GRo3oTpwtauT7a8L57cWfW1klTS+DhW4aRtSH7gYRqt/wYVxh3g3MLF+BpdKUboSgL119Sc1GW/nldG685IyEWnuOckXKPapPX3Cz8/6O9t1zX1eTY/GAvjSUM4bZjYdopwu93gB3p29IO+O8eKEbiBtZ6ok+fCMehMhsgmIj7GDwZ8P+DEPVb/DH6gnY5p/EBoPZ4fkAchfXcelim6L65j5GxAbkL2A3/2IIzuhW5oeihcsmIzWXIOwQ/6e9v1j2C96FlICr9pSTtI+8HpdKqqSojxPQB+sIh3+4Fp4mWG0RAIOyCYydDUxLSyNOB7wAf7QfzTL5QPkoUisVOrekseJ/2AVC5Rat1fE9PUrCNwGwPc2pHSKpbuKuvFnezACqF/fX5g7vf+8Qj2D1wh5Qdu5ShE9gN3lgsblongB+t4sx+Qmj8GEgtJA34lcxny9xC8qGCN6LP9wDIa6g4ccbCmKhKtG+gMidMyFyOMkWlpM40vk41ZM/peWhLXk+gkc4kr5IyKu0SucFHACOcH3q7A5Af+VkHkB6wbvOYHbs/AATNYRFHzg6iGUIao+cE1YsN7kjng/IC73B3rL3T03VnpBqTTLDUkzg+4EmutNU3NmQBzrVLZg5/COr5+vYi9C0X8W+YH407zxJ8/Hw+i8Ll53N8vnBtoNg/k9aJgfgAW8W4/ICYILm62mxzXQMgQs3+wsw04dvMDQVvj4/hyLoy0lhBvwS7ewOcakjsgO9waP7Cmqd20gP1j0fvBotlAsma5J0E5qekar1rRXIi4n2yt6nlTf99gXFDy2GQzGWtEq3nj80WjkASqP4sa1oic6vtyT8pQ0IQX86l+oJJs9eOeQXzQSkzwjK+wobzIkFzrvgcEx9yAl5W2acmInSlw+wdxzdxCjfx8kVXPD8iaSScQ2tU7kMoPpgG/e+Q0eh8h5Qf9/eLnOHg2FS8fvJ03vH9AyIfw/sHs3HiWlCGqiTe/gLDD86b+cQwZKVRiIyfQ1LCon3GH4zC5MJZXdywopgZh/0BoNFioIa/i9htWd9Xvs+wTpLfpA8C3Au8nZwRZBQAUBPwgI8gqAKAg4AcZQVYBAAUBP8gIsgoAKAj4QUaQVQBAQcAPMoKsAgAKAn6QEWQVAFAQ8IOMIKsAgIKY/AAAAMB3BvODjCCrAICCgB9kBFkFABQE/CAjyCoAoCDgBxlBVgEABQE/yAiyCgAoCPhBRpBVAEBBwA8ygqwCAAoCfpARZBUAUBDwg4zskFXlp8c2byIHyobkr30t+m6wnldqJoM3/Faapipl/4MvhvrgA2rfAfhBRvbJauV9c1j42qVAUJVlvliZr/NyQ3LnBSnc8JuUr9RManH833U9sWo/8DMmfyl6xT1uCz6k/C7gBxnZM6uyagtnOUUmvYHGNNFnr8evXms+YJ1sSGNIpMAFIpis5JWaBYXdan6QrEfoLfkZZ7ldRa9MW9d1VZ1/fNGBpj1duuFcf78MXfvz5+8HE+MDS3gL8IOM7OwHMf5Z4UL5OCHHo/L7ftB35+G3O1jQZ03nyY/XB8dbLcisqNmFyUbiypW+JUxTyHmGcu1I39yc/n6pm5+Px3RABNSDV/T3tusfD2tNe6obzxG8mDkb+sHtdrter9frFUteSfL6Qd+d3V90QhdGKaFOT1eeu77vGm+cqRiN+u1O1Wx/fwly+4EvnbFocuIeCK6svFzhjED2++7ssm0ayRD4VuJexTLqxwcaXSlG6EpW1JzUZb+eV0brvi/Ki1orNgYSSevvFzeuN23dmCC2v7dd19Th2N+0XgkTM7LtFOF2u8EPkuSfH5iGFOO+O/uyPovqu/P0a/ZjwWh03q7pwi5cn2xwjww77x/YJYP9fH4w++V7g+IuhM77JUnt00pt353rYbTwxXVMWbMwaeD2DwJLWL16wzW9dH4geEbsHLNJge8Nz9Nt1z+itSDTtpNvMDGOpB+cTqeqqoQY3wPgBxry+0HfnWM/CNzAWk+/yXPz4admNEq2G/FhfhD/9Avlg2Qhi+wHigmCxsySfkAqlyi1phn/gpimZh1BXzO3Oi84in5XWS/uZAf0Qp9scSD0g/mKkbnf+8djvjdg2lNdV9NuAxUzQ/YDd5YLG5aJ4AeLeJMfEGs+T0Mg7CCuUDEandqdLzfNPeDz/MBSCu4LvSMO1lRF8PL8QONSspbJY2Ra2kzjy2Rj1oy+l5bE9SQ6yVziCjmj4i6RK9QHSPMDNwuItb6/X+q6+fn7IcQ8ecUP3J6BA2ag4T1+QGr+GEgsJA34C0iK0ai/h+C1H6wRfZ4fxJoe/+RO+T6RvHDitf0D0n5kl1KuFwnxQ99qzgTW1pwUeuH5nxcFWojPMT8Q9g/Gp44mZo8UmfbUmN+mOQkxVrd5IK8XBfMDoKGE+UFQwwvzg2vEVndJspsfCDIaH8eXc2GktRCEi0La54uEyjk/cOXCo5NaP7Cmqd20gP2z0te8aDaQrFnuSVBOarrGq1Y09yT5fBE59h/s4CHGWLvRZjLWiJZynP0DFzffQI5reG3/YAcbcOz2fnJSsuXhIRcftEIzTeCCPZ6qSj3VtcilXJeq+bOb5BBY5wf+khE7U9DXzC3UyM8XWfX8gKyZG91z7eodKN2f5zsFbkegrYNthFHr3csH8TyA9AO8fPAu9n++aNzEC1R/FjVIDKfsytFo0K7bO8y8RuSzw/Om/rEg9ErltZETaGpYh+BDZM8rar0oOdaWFVODsmbOGAIXkR8rWroiJPRZ9gnS2/QB4FPZ7/0Dx9wEiMFldM47qxuNUu2+4QUEvOUHACgIvJ+cEWQVAFAQ8IOMIKsAgIKAH2QEWQUAFAT8ICPIKgCgIOAHGUFWAQAFAT/ICLIKACgI+EFGkFUAQEHADzKCrAIACmLyAwAAAN8ZzA8ygqwCAAoCfpARZBUAUBDwg4wgqwCAgoAfZARZBQAUBPwgI8gqAKAg4AcZQVYBAAUBP8gIsgoAKAj4QUaQVQBAQcAPMrJDVpVfnVRWJaMM1vdzKRX1ycwAzVfjg08i++ALkeA7Az/IyD5ZrbzPzXOKrBF6WbJjP5DDFrlLsrm4UPADX9wD6Se94eAecPwego8BfpCRPbO6SM3JU5yUkzVU1CfvuYaS6q+JDwpJofc/ZO9/ql6Q1KTa9t1laKkxVJhp6rr5GZ8xTX3uvh5B2BRn2vEGplKiSNtJADYBfpCRnf1AGIMv9QPhrP8zbi6+Vi6Ru8R1Q7MoJJQviOm7puuttdY0dewIpqnrQb+jyy515fxgCnvGmbY1QaumrRvzeAzX+laivBElt9vter1er1cYDIg5oh/03XkmM+eut9aaxhU0B+qsRO6sckLszsbHwsCfjJH9QD4mq1phBvGdBlrmy+XSvQG11Jrm0vVxYN9d6tAn+q7puqbyRX0Me7gfdVWdfzDnTRsawtZThNvtBj8AMUf0A2sH9fd8YHQA04yFM65P9u5kip33D6xCpjUHQiv+Tw7N5fqGuFOBB+i1XjAMwTZMwwxCYj8YphTBetHcD/rejstDT0+I/KIxvOeRDPclxPgeAD8AJEf1g747P6V/sgbGDwbgB+RPv1BzwEk8VyHZGbJvZD3JGoTyeHtghdYrxt2mGWqNxuzWEn5gunEYw/tBePHDDu7wNIfl84PkTsmwTAQ/ADLH9wNpfuB7APwgKIljrGK9KFkeFAq2oYnhbicuDLptFSIYhK04O9F3F2IDIfIDN49Q+YHtu8vF7TK0npst3FKWU+H2DBwwA0ByZD+Y/nE8Ozfzg2CNCH5A/vQLhcu5euQKSfWXW9GwKNhmnx+MmCbaKLChH4w7x95f3Z/8EtBQHJUSswPlxjh5gwPB/AAAkiP7Qbw0NPnBNeINnUyxmx/EIi4cx5dz8UINybG/rMuy4gumQp6SHzfaZn7A2AG5nzyGp+cHpg32qPvuEjyXuqyTElgjAklK9QMbzQ8OyG7vJycH1Bpplk1lqbsoy5X1yBYSy6Vmt1lz1r184L1+4D15Ok0HokdOfT+YhT2ejxdVwROo4TOpuh4CsCFH9QNvE3leyu4fHJAdnjf1j4UxuEbBlSN6efC+lR8okRdJ3PKR/CYz1BaAgSP6gb93MD3lh/cPAAAgJ0f0g48BWQUAFAT8ICPIKgCgIOAHGUFWAQAFAT/ICLIKACgI+EFGkFUAQEHADzKCrAIACgJ+kBFkFQBQEPCDjCCrAICCmPwAAADAdwbzg4wgqwCAgoAfZARZBQAUBPwgI8gqAKAg4AcZQVYBAAUBP8gIsgoAKAj4QUaQVQBAQcAPMlJQVv/4448//vjj3b0AALwT+EFGCsoq/AAAAD/IyA5ZJb9DKX+6kmTwg61qe4X4y8mv15n8BLELcB/RJD+lGdTDVasv13/nWUZTj77z3AdT8WHRjwd+kJF9sjooJvnZZD9G/jCymx9sUtuL9yKX2FWaJaut7wecsMpqLnSPrHA4jv/L9VBuV+kHfpdk55Or2pPT6fT79+/39uH7AD/IyJ5ZlYVYOBv4wSa1BbhPX5+7Xq429pWk06wY58YKmPQDUj0DhU1Wtcn8IGlLXFf9A7KTmrYiTFvXdVWdf3xFgf394nVlijDtKbiEixyBJexGNj94akBjrGkaE5WP56y11vbdef5P1YuPzs0CTDMLTvQloUebs7MfxPhnhQiqtL4AAAhESURBVAst5Qev1DbD/fGbphL/tOImuEYF1Y71Kyl5vnQuHdonz5IzgNirgqb1Gs0JvXzvq71nTn+/1M3Px2M68DD3ez8JftsNP4bI34/pgIuc2NAPbrfb9Xq9Xq9vn/cck0x+YJqn9voi0HdnXxBM4yn09KPvzl553zXDYd+dpzrPXe9kPuUHKT26PnnpjsmWM/uBr9SxEJNiGuu784N///13q9o4pr8WzO0Et8adtboVHqGQi9E4zSDcnCiT4s6JdcWM35P9DCrxW+HiN19ks/39cunGsbxp68ZwsTM78C45Neb3g4mcs+0U4Xa7wQ9I8vhB351nut8YG7nBcMYpvyf3ROA8gGsoiaBHJfrBgK/gpGrbuYKTB/H+wSu1cYxGLt6IsuZYQBctHCV1WXMsu4i8Q+BKgqbXLeAsmjAtzRWXt9mkwBf6EGJ2wFzC2UHaD06nU1VVQozvAfADjkzzg2GVZ/6Pn1rbmc8KvPlBLPLb+MGsBt8DPsMP4p9+oXBA+sHq2hhmC4fkjfhwNxiQHP7rF9zl9SKunFs7Si4i2ZRnKG9WuEFhhUoQemVuQz+IVoxcnBP50A+mH2FkgOwH7iwXNiwTwQ+SZNxPfq7aS6P+wAX8+JAN/GCmR8Ea0cf4gaWk09frQHBlP1hXG0nCDVLTEbJRjbRpdnGT263K3QK/xO+PZnF/nR+Quw5bbRcv8wNmfuCLvDw/4O3gJT9wewYOmAFH7ueLpokC6QfR/IAX+Jf9wNeja8Siu1JywPkBd/m6+QFXW0zfnZN/TkoTCsgxoNbsGHMVKucHsYFp/CB5v1xwjvmBbv9gLvLS/sH6xSKbWi8K5geAI9d+cucp97hqTxhCsGlw7npe4l/zg1iP8tmAYzc/IIfnsrwGp3w/eL22EG+dbvY3g7/2vX4Qx6zzA27YzjW0aOs7KCQ1XTMjWdqWh/h8kQtpfZ+gni+iIyc22UzGGpGG7M8X+Zo9f3KIe76IVv559BOlHzB69AF+QI7fyTABO38/+fXafIIHhuXni4R6VviBfjc1EHFSqYXRtLxRzLUbxCjnB2TH9BlYZD/pzjzfHPDeGTBtPVtGCkWeuISJtNbi5YN9yTc/MOSGwEwdnif8wkHdx70HPsALquRHTvV6tDk7PG/qHwvSzImp9eYH//7771a1bXI7QWe4qxaJPqnmlhmtc+WyHMuP7nCus3SWkCTpE1wqlAHgI3nP+8mDku/8dtj+FPTWN/5/dgCAN/7/Kp4D98+1BfgBAKAgPuj/X0T+ny0WvJywPQVlFX4AAPggPzgeyCoAoCDgBxlBVgEABQE/yAiyCgAoCPhBRpBVAEBBwA8ygqwCAApi8gMAAADfGcwPMoKsAgAKAn6QEWQVAFAQ8IOMIKsAgIKAH2QEWQUAFAT8ICPIKgCgIOAHGUFWAQAFAT/ICLIKACgI+EFGkFUAQEHADzKyQ1bJD4fFXzTbuRubNJ2sRP48/VI0XyhTfn9Y+Hg9PjcGjgz8ICP7ZLV6fvRYsAFOnjaxjbiGpX3Q1+yz+SfpNX7gK7vGhzb5+OWLHKEPoAjgBxnZM6uydK7QXPd1avn7daSyJ7VeKNdb1zo/SJqBZSYcQXPcJ5c1zdHMPkTPBFy6r0cqfgwLvx0NSwBJ4AcZ2dkPBPVc7AemGb8sZ5pK/Mpc3ArXruZY02G7apzuX/tgtDL+tD0ZL5evC7OmreuqqgQ/6LtLXZ9/jH7Axvf3MSyXH9xut+v1er1eYTCfx75+8BxzNmYSHL+88rQn+vylF09+GrNqjHpUuw+5s+rrfiygpObGbiErr7XWNFIyg1aC2rifL/rBwIr5ATc58K2FcwsbzRs0JrRAiPvuUjeGCe67tuua+uzND/ruEs0P+rsLS8yBXuR2u8EPPo89/WASFn/Q2XdnX+tN42n59KPvzl553zXDYd+dpzrPXZcY1V6fZLvHGTvvH1jFGFw44DCN5K3KVpa2TmquHzBI8yZ+EJ9asbccdEyA7Z7gB33Xdv3DNLP1otgP+nvb9Q9qvUi+d7/nQozvAfCDj2RHP+i780z3G2MjNxjOOOX35J4InAcECKPaD/aD+KdfKB8wzCZyZOukZJPdiPsjVCuXBIN6leAuEfd48rFO6DeZH5iu6220fxD5gbnf+8eD3D9I9iS5HTIsE8EPPps95wfDKs9cpU0Tq/x8VuDND2JhkvxgVu57wGf7gRXFNNZuWZoTbpCakZDtkgjVxiXkjq5mg1deL/I1favt4g38wLTtUCr7QRi2pR+4PQMHzOAj2Xs/+bm+L436Axfw40NYP5jpWLBG9Nl+QA7MBdEXTvXdOeEGah/SN8qdjQtJP9hSoKNW3jI/GHeOJ54eMPcDNkzdDXm9KJgfgI/kLc8XTRMF0g+i+cF8pSmsifAD3w2uERvfDc9ufkAO9mWlTp/yZljjekXq8vf6gVWrnrDur3kUVfP0kT5gQtxPtja9XjQP2/75IqwRfTy77if7qjKu7xOGEGwanLs+3HsgY/2yIHRnG3Ds9n6yLK92+ftowQNc8vNFQlUr/EB/STByX20J8rg4+cTRNn4wDe+dxEfvF/h+QMQHYcsmBwDYdz1f5Av8/Mkh7vkiZiYwix5LyFHtR/pBMDYXhH7N/GBVH4L+LG2UdBSuKm5asJX8JX1i6NjqAACOxs7zA0NuCMxGo88TfuHgHOPeAx+gH9XuA97yAwAUxIHeTx7k/u0iviFHyCoAACg5kB9Ya6ch/kfYwmGyCgAAaY7mBx8FsgoAKAj4QUaQVQBAQcAPMoKsAgAKAn6QEWQVAFAQ8IOMIKsAgIKAH2QEWQUAFMT/A+mKmmWQsYN4AAAAAElFTkSuQmCC" alt="" />

Math 对象方法

7-13 向上取整ceil()

ceil() 方法可对一个数进行向上取整。

语法:

Math.ceil(x)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgsAAAA/CAIAAADhSRwLAAAFD0lEQVR4nO3bTXaiQBSG4cqiXEq3UzaRkwx14kkWkE2QvThjG6lRD4M94Egq1A+lUpe6+j4DjmIp9G25nwXE/AMAPLzX923ff59+M6fT6eXtD0uWLC9f9i9vf/OX/al/vWjZ96/vLO94+T005XqWJ49xn7QAALRt3/eBhOhQAIUFoAgJIYrCAlCEhBBFYQEoQkKIorAAFCEhRFFYAIqQEKIoLABFSAhRFBaAIiSEKAoLQJGVE8IYY4zJHLndbi99V21kCmuMeX5+7n4Xyi9abI3e8gJY1poJkdOzunO/GxJifKy0hUkmhImYjHTXjE/1VhjAglZLiFj/ivUm5hD5MucQwTcqLSyAEta/DpHuSn54fHx8pONkd1Z4x69RurCzQZvzLo2FBVDCOgmRnkD47WlYM8whxlfTTbDORlbPWaZgqXNypc7CAiihlusQiZ+ufoMzkasRbvOqs5HJJ0SXzNTM/4L6CwughJWvQ3ROY5qs94e5V6r9hJicAKmzkUlG70UJYTzjGBWFBVDCameZ3MsJ48qcn7pdaA6x8xTd/6uJnb676F6mRJZoKSyAEoaE2O/3a/7FXLB5TV6aNLLZOUSdaj7LFBzQKSksgBJqudt1st4f2YVOmk8+s/5GpjEhOg2FBVDC+ne7DmKnQSav5gyuWT33MnWaywhARi1ziFiTcl813skldd1NrLDBe71ipZvNEgCPqZY5xIOgsAAUISFEUVgAipAQoigsAEVICFEUFoAiJIQoCgtAERJCFIUFoAgJIYrCAlCEhBBFYQEoEk0IAADCCWFRAIUFoMjn5ycJIYfCAlCEhBBFYQEoQkKIorAAFCEhRFFYAIqQEKIoLABFSAhRFBaAIiSEKAoLQBESQpRkYY0x6Vdjym10HDC73cV3bPD09PT19ZXzamxkzhjgbpAQooQLO3bV2bSQ2WjOmktHXiTd9/1lYqQfYKQF7g8JIUqssONPdfep+2paoY0Gx8c+avE5RLr124z5wWQlcwjcPRJClHBC+I/dNWPbDT5dfKOTkekAWHwOkej+/oRgMkvw3xh8yxV7tTu75Z8GlKM4ITQeXQKF9bv8bG+9/ed5/kZjIeQnxIJzCLezTx64Y8ZGHxwWHDD5/Ovo+g7joShOiIGuo0s+IRLnfIJziGAjnm3Q+RudfbAst63buY4fXBNMgpw5xGTTE+73Vtd3GA+l2oQ4HjbDode0w8PN4Xh+Te/RtWJC2Gu7cE4Tz9loeqX7IC1z2OydSP7K2evVsSlIcEYSm6zY8/TXfervKlCDahPCWmvbxpimtbZtmp/9UX10lS7spOEmfsLndOHgZ1690fRnzn74IjIvU9ub5xCJhNh5FvwHAssaEmK/39eYEHYICfOTD9qPLskr1fm9dXZk5qflDDOR2UZmmM3uQ1psDuH3+hvnEDZ5lknjVxePqeo5hLXHQ9M0G/cMk+6ja5V7mfyntsxfzOVs1H+aOclYxOzfwaVveF3wXia932E8lJoT4njYDNFwPtt0pvfokils4kyRvyb2o37xjSaeJpJD8iyT8a5p3zKHAO5AtQnhXJ5um6H7NKvv1M3ErlTbufMzwYS4eg5x0UmhnP0JftqNUxybcTrIDwb/cfAPqq+YRgD1qzYh7hOFBaAICSGKwgJQhIQQRWEBKEJCiKKwABQhIURRWACKkBCiKCwARUgIURQWgCIkhCgKC0AREkIUhQWgSDQhAAAIJAQAAKP/FL1uYSxG3+QAAAAASUVORK5CYII=" alt="" />

注意:它返回的是大于或等于x,并且与x最接近的整数。

我们将把 ceil() 方法运用到不同的数字上,代码如下:

<script type="text/javascript">
  document.write(Math.ceil(0.8) + "<br />")
  document.write(Math.ceil(6.3) + "<br />")
  document.write(Math.ceil(5) + "<br />")
  document.write(Math.ceil(3.5) + "<br />")
  document.write(Math.ceil(-5.1) + "<br />")
  document.write(Math.ceil(-5.9))
</script>

运行结果:

1
7
5
4
-5
-5

任务

在右边编辑器中补充代码,在script标签内,使用ceil()方法,计算3.3、-0.1、-9.9、8.9值。

ceil()向上取整计算,它返回的是大于或等于的值

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgQAAAJuCAIAAABAD439AAAgAElEQVR4nO2dTYLrLJKulbWCrsXoWw+1kvIZXPVaWnspjbqWUakl9B1IwgiCAMkGCft5BufIKPhxZDpeAuSk+7//+79xHP8N7wavAkBDdIhBIfAqADQEYlAKvAoADYEYlAKvAkBDIAalwKsA0BCIQSnwKgA0BGJQCrwKAA2BGJQCrwJAQyAGpcCrANAQNxKDruvy7+rGd+AmXoUP4+fn53//93/dC+86fGlLwnIAy43E4N9H9AAxgO/EhvUuQNEDUUIAXC4Wg/AX2kOpWHOcJ0AMoAQ5mYFSCyDGXTKDzOCeKRiPjXcP8wB38Cp8Em42kBnZkwnEv+/xYYE70IYYhHdzxAMxgM8juUxkb+m7CB6IAdxIDPQpv/7S4v5OIwbweXhbwbHNAG8RKZYTiNfwndxIDHJK9K0FL9tFDODz8CJ7Ugxc8XBtbvVhgTvQkhjotx4Bbx7iQe7gVfgkXBnIfJoolkDc7cMCd+AWYiAGd0UewouFW/1aX+5V+EhOLBOFL/99sw8L3IFmxCAmAKEevHt0J7ncq/CRvEsM/n2nDwvcgevFILYc1ElfMdP3DG4FYgAlyPnSGd83hhNc/6WzsORofEcM4EtYNEAM9LEvo+lbCwCW6zODTwWvAkBDIAalwKsA0BCIQSnwKgA0BGJQCrwKAA2BGJQCrwJAQyAGpcCrANAQiEEp8CoANARiUAq8CgANsYoBAAB8M6sYzPBu8CoANARiUAq8CgANgRiUAq8CQEMgBqXAqwDQEIhBKfAqADQEYlAKvAoADYEYlAKvAkBDIAalwKsA0BCIQSkqeLXrOrFw4fU2Y4145TlmR8cT2rslPz8/v7+/hxoEAB3EoBR1vLqESPdQQ9FGIWzK+1fsUS8Jy/UR5vcivgWEAeB1EINS1PSqHmGVu3pkF++GYV2RluR1TCT0l2QGAG8HMShFZTFITvljFWMtzFKUD5sVO/KazR9J8i2E4zynCo+NE3UBPpI7iMFouq7r+mHKMZ6G3ojDHU1mC5Uo7VUvaod3w2s9uM/72K0IQGgc6yjsN6wVG4k+qoUXUwTEAMByBzGY52nos8RgNJqZfPeqOWDlPYNZjdrJi3k/Nw8bP9SsWJ4vM3pTyczg5+dHyRjc3wTEAMDSkhiMppOTggyTbxCD8KVbeOhC0Rhxgp8jG7oCxcajl4eZgS0RkwZvWoAYAFguEINp6NdYYuP/IgaDCUudEhvobbkZl0tHR1w1uPZjf4kYzEG4nGd5Wi0aiy+TmUFo6XUUTueTXZzODBQxeATMALBRXwy2cD2aZxRfYroZZzdJ2DYBpsEMkz/pH81iP5p9JjAN/WJ2+RzwhplBrPocf0xozhMDvSNlALHRns4MZnWZCA0AiHHdMpG7NORfW1nYJMIptozmeXdX2g93mANWEwMxUOpRWzdT6h4SAzcz0BvJacptU8kMkiAGACJXiMHy9FDXdboY2FddZ8ZQDKbBGBNuNWy7yJfPAat9A1mfd89SAA2TANdSaV+pOwchOywPX8am/K9kBgBwgupiYB/5iWQGz6BvnxVdFoh2y0TT0NuNhL1GOGafLQZKjNZjsdiIW0XUALFTbwD6aMOxxboQVSr2Nju+gQzwDi7ZM+i6ruv6vu+6zlGGFRvanwnEJg67DeR+3UgIKqWeOKrE9c9oAQBkc49HS/N45dHS+rTiVQCAuS0xEBaFdti1o1vQjlcBABoTg5k/RwEAUILmxKAZ8CoANARiUAq8CgANgRiUAq8CQEMgBqXAqwDQEIhBKfAqADTEKgYAAPDNkBmUAq8CQEMgBqXAqwDQEIhBKfAqADQEYlAKvAoADYEYlAKvAkBDIAalwKsA0BCIQSnwKgA0BGJQCrwKAA2BGJSiglfFkyZjBxSfaDPWiH5ecaxKcmD5Y1aOPnZvcUIyQD6IQSnqeDU8HFi0UQib8v4Ve9RLwk7z34jSlFsYC/RL+c/PT/hOEQYABcSgFDW9qkfbQ5NxPTMQQ7wiLZnkpyOinsVSATIDgHzaFYO7H3lWWQySU/5YxVgLsxTlw2ZjHeWLgS5IsUIx0NvCMDM4pwqPjRN1AdqiUTEYTadEfPlu5Q92aa96UTu8G17rwd0ahLVizYbVw+HpKhWqjlsSvtOFmBLYoP/eFAExgG+gSTEYTScnBRkmHyMGC64YJCfpOYE+1IMTzYp1Q5vMW6HkJNeFkpmBqxwi7u8JYgDfQD0xmIZ+/Vy6s3Zbagufdjaae0Y20NtyMy6XTsuuGlzywa4vBuFLt/DQhaIxsTl+aBmORCxJ3lIGEIb4nMwgZmbxMkjEAL6BamKwBefRODHbrudMQ29vr3dHs8nBtgkwDWaY/En/ZjaafSZgW7zqg32JGMxq/A3jeEw2chrPEYOcscUIbdyKr+wZ6GLwCJgBvoDqy0TT0FsxCNdy3NV+G87XBGA1tcVupS5cFBpN1w8XfrBvmBnEqs/xx4TmPDHQ78ayBKW6fld/rjQ0CO31ZSI0AL6QimIwmi3UOGLgbfQ+0wE/6i+KYMZQDKbBGNMHW8Zb41d9sKuJQXIOniMGc95c/pwYZI4hlq+Ed1/fM0iCGMC3UUsMdgtCW9yehv4Z+5dROKtINm+wz4ouJbt8Yhp6u5Gw1wjH7FPFIH/GrRBaKu0rdUNLr838KuKbchuJBfr8zAAAPGruGSxZQd97ycGKmxB0rklg420g9+tGwq6VnCeOylLh0VL3WonyYWANb7lVRA0QO/UG4N2KRf9Ya12gTLFbLuHfnxC/ftzxDWQAla97tLQazXkVAL6ZJsVAWBTaYdeOrqRBrwLA99KoGMz8OQoAgDfSrhjcHbwKAA2BGJQCrwJAQyAGpcCrANAQiEEp8CoANARiUAq8CgANsYoBAAB8M2QGpcCrANAQiEEp8CoANARiUAq8CgANgRiUAq8CQEMgBqXAqwDQEIhBKfAqADQEYlAKvAoADYEYlAKvAkBDIAalqOBV8fyv8KSz023GGokdSaY3++LAXJRjLMODz17vDuAbQAxKUcerXXAysGijEDbl/Sv2qJeEnSrjzxlY2Egs0CsnXyIMAAqIQSlqelWfbuuxWCkR74bxWpGWQ+S8C1E2YqkAmQFAPohBKSqLgT6zVirGWpilKB82G+uokBhYxEBvC8PM4JwqPDZO1AVoi5uJgX628crdD7xcKO1VL2qHd8NrPbhbg7BWrNmwejg8RaWUMcfe6UJMCWzQf2+KgBjAN3AzMUgzmk6J+PLdS+Z3lfcM5oxJek6gD/XgRLNi3dBGqa5U6TLWhZKZgascIu5vC2IA30BjYjCaZOIQNfl4MQhfuoWHLhSNEef4Mdk4KgZK46JNGOJzMoOYmcWbOiAG8A1UFYNp6NcP8XP6bsv6YRqNfGGXjmygt7XMuFw6+YCrBhd+pC8Rgzk72orG4stkZqBb6mOLWXoGnjzMr+0Z6GLwCBBHBfBh1BSDLUqP5hm8t2X+aTDDtAT5frvYRGAaelvRmfRv+wuj2WcC1vza+d0NM4NY9Tn+mNCcJwb6XXFU4hhi4/Tu6s+Vhgahvb5MhAbAF3LFMpGN+PM+6M+eGLg2/TA9o7xlNJ2w4Tyarh8un99VE4PkHDxHDOa8ufw5McgcQ6YYdO/YM0iCGMC3UVcMtlWfbr/NuyiCGY+KwTQYY/pgy3jbRb52flftG8h6DJ3VB3vCkK3P6JW6oaXXplhlPigG4lsItYEvHAAcpaIY2Cd93EBvnwZdloBUMdgvE01DvxgEj6M6Zh8sBkqMFmO63ohbRdQAsVNvAN6tmGB4nSaFKqYiC+HfnxC/ftzxDWQAlcp7Bl3XdV3f913X2fi+skqBY7AUWovl2t1A3rVg9SDjiaMaNPSMFgDAFz1aWpmGvAoA0JgYpL6jbNeOrqcprwLAt9OcGMz8OQoAgLfTohi0AV4FgIZADEqBVwGgIRCDUuBVAGgIxKAUeBUAGgIxKAVeBYCGWMUAAAC+GTKDUuBVAGgIxKAUeBUAGgIxKAVeBYCGQAxKgVcBoCEQg1LgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINSVPCqeBhkeOzl6Tb1RpJdeAY5QwrPvDxK5nHH4WGZ57oD+BgQg1LU8WoXHBMv2iTPGXab8v5N9p55K2dsSmsxvDhuI3t4ErJrqZyWjDDAd4IYlKKmV09P4fWQLd7NkZZkYebIY2NW4rU3zXe1IZYKkBkAzIhBOSqLQSwuz3liIFYXA7o+jNCsC5KM0mLgTvB1MdCzh4XHxtFxArRFu2Jw98MvS3vVi9rh3fA6GdzFW+fitdhm7K4uZmHjohh4MmALQ1UIpcIzDkEM4OO5WAymYTjV92g6JeLLdytP8SrvGcwZs2890LvZQNi416keuzN717uIlSQzg/xlIj0zcH9VEAP4eC4Vg9F0nTy7T9ZLVYuafLAYhC/dwkMXMY1RxuCViDoRE62jYhAL3/NxMYhlBt68ATGAj6eeGExDv35811n7aLbP8xK2Iwb9MG2Wa3i3gd7WMONy6eQDrhpc8qm+RAzm7DAqGosvdTEQ78bGo4xWfwueZenM4BEQff8An0I1MdiC82ieMXsa+mfEjhlsImCN95P+LbsYzT4TsOZXTfFumBnEqs/x53/mIEzrhD0q4iRex0Z7SAzcf91y7zo/MwD4eKovE01DL4tBzMC/DiuNphOWm0bT9cOFU7xqYpAMwTliMB+ZpCfvnhODzKEmxaCT9odf3DMA+HgqisFzWSgiBrJBUgymwRjTB1vG2y7yVVO8at9A1uP1nJrOh5b57StiEOtijiuQ7U5s9lBmMKuz/hwbgG+jlhjYB3ximUHUILjeLRNNQ78YBJvRjtlHioEXUpUonznd9jKD5Ow+FrWVujGxibWvvDuXMIJ7ob/L/vqxrjQAH0zNPYOu67qu7/uu2+b+a+EW4z0DmymYcfau3Q3kXe1gC+Iy2vz2BgB8KU1+6eyVR0ur0ZxXAeCbaVIMUt9QsGtHV9KgVwHge2lUDGb+HAUAwBtpVwzuDl4FgIZADEqBVwGgIRCDUuBVAGgIxKAUeBUAGgIxKAVeBYCGWMUAAAC+GTKDUuBVAGgIxKAUeBUAGgIxKAVeBYCGQAxKgVcBoCEQg1LgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINSVPCqeOqkfiDlKy2/2MjRNpUzNaudTJl5SPKJw5NPn7ecWTE87PN0OzGz8JZo/Le//e0///lPeA13AzEoRR2vuscIxzRAP0BYafYtY1Pa1MejjM3jGYBeONZoND9mTIQ2RQyiQ4rbxN7CX38N//rddecd6ezpk23B7eL8ANTuwjaTlp4AeC/Hf/zNjP/h1Ok7gBiUoqZX9dit3O2C0+r1AJ0/nrBurJ2wvNsULmYfCU8vnnC3kwMvdNqgHEbPTM3Iiew7KYhYKo2H/x4fgGbsGeToSkYqgBzchfuKwXbEfRd8vqNnnKUarHoCWmUxUCJ4vhgkrw8N6ejY3CpKv1ExCOf2B5mGv/phWloII2ZmaD4RPZ/vaPzHjxl/f4Wm3iIG6QEcMUtez5sY/O1vfxNbW3Ri+u+//hr+5b2nP3/+PB6Px+NRbUkQaojBNAyHOxjNGu9H0+2OOx5NqA75jUp1HxvnGo12VtirbmAN42YsyHrhOBmXxcanobc/E/faq+KNTbwICSvGLL3wZLVgGvqfbpUF99oyGrdsND/98K/1zVg18AJcpy6kJMc2503M91qQyDC83t+bGcT6OvSuFw1IbxKIajDP8zz/+fMHMahGeTHQz67Pa8CG8NG81la8gebEYEGJnuG1cpF5bVl/qtPQS/oaxvdYp+It/e24OOHJiek23E9D7xS6o3+qgV+vX1Zp9Fl5zrw4FknFBail939svYst6M3a6xwxiCnW0b6S79ouE6k7B+M//vZUA1cAEIOavFkMpqFff8XWEGEXe9YYHDHoh2mzDGK1s7xjQ/lm3A/T1qZTz3ZixuXSiVeuGrgC8AFiEL50C/WL+fCewfojUNI0O5hkg+KAj4nBNPS7RaLR/CzDC6VgZ73Tgnka/lrLYxFTXDKK+S3nSSR3UH/tEoPcDeSjYpCJsjiW/67zxGD6779+zP/853dbHUIMLuG9YrBF2tE8o8Q09M/wGzPYgvnOeKsS1BaaFSRkadK/Zet5S0OfIQZzat7theNYxZxALC4Qef2KfYnjcY3fIQbyAtHurhl/PS3Yi4Ey8z2dGYgx1L4FUQz0VZ2jy0TaACK+zdlMjoXs2HOlohg8Hn8ee1CCmpRZJnJXD4T4HhpI1/M872O519LzpaAFS3EnJhpdPzwCTr7TODfMDGLV86+fTEPfmUH62c6R/QxRgcQSUQxiyGIwDf3POjw5nCz2o9nnDmkxCEte2TOY93oWikGsEQ9RBpR1qmSbyVUy5SfS7bcNQgEIHjGKZgZQk3eLwXNZKCIGsoEsBt5jQ4GsLLsJ02DEpYppMMaES9rbFkQhDXj2U0sMxCCbjubZVaTq9uek7QidFoPksCXcOb7dK9hvFftv4afz15ESewaWV/YM5mhcTuwZxKb8cyAGnZMoHBmA3O/p8jlXDKJ7BlCTt4qB3eqNZQZRA+na3SsYhmkWdn+D3QL3Tr/VCRRke926GIQz6JiZQo6Z16C7yLd/IQ8v2WBsPLF3KsYy+zTRaH6eMf75wl9IEtaR9k8TuaN6rxjY9r1mvaeJYsbKEpCyWJQzALHx5K1MMYiVKE8TQU3evmfQdV3X9X3fdVuMcHcaQwObKZjxmTWYwe4zP+vO0rNA+5J1YcjZNQ62pV9+HinbF+UfLXWvlYAbBt9YI0mbEyMUQ783bLFuJ2USmh4kv2fgLScG9vr3DOy1Hpd1M3eJP3wZqkEyZId5gN/mkQHEEgVREcPGQ05/zwDqc98vnYkEoXzNGdQStYFiNOTVTyHxDeSUFrz8pbU3sPsG8nfAN5DvQmNi4C37+NsF4mb17na9LyE35dVPIfMnvDx3GkhBf4cw/GVysNsugEtpTgzmZV/ZGHf5KIsP/nMUAAAv0qIYtAFeBYCGQAxKgVcBoCEQg1LgVQBoCMSgFHgVABoCMSgFXgWAhljFAAAAvhkyg1LgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINS4FUAaAjEoBR4FQAaAjEoBV4FgIZADEqBVwGgIRCDUlzo1djZYScMXj/+7F2WsTPRAOAtIAaluI8YuMdPxo6i9CrqYhCeW6lE6swIrg/saGsAcBTEoBSlvaoE4nOZQazlnMb11pIG3tiSw4uduAsAp0EMSlHTq3ZaHUZwMbLnT+djSvCWxR99AMqt18XgsfFiOwAfwy3FYD3neDRdtz/achp6+Yjjykda5lBfDGIv531sFQN6KCGxpuaI9sTCd9Imsx2365+fn7ckB4gBgOWWYmCZhv4pBqPRzjyW7144AaywTCRex16GsV6My7EL10apqI9TJ8cyRwx+fn6U7MH9ZUAMACzNiMFoOjkpeBI1+UgxmIOYHpvyh8aKGMQQewx7iQ0ydksn1poiBvaWaOPNDBADAMsVYjAN/fJZt1P5raQfptldHXqKgQ30trIZl0snH3DV4PLPfH0xEEvc8nwzJTPIaT/z1lFL1yCmB4oYPAIyBwbwDdQXA7ueMw39Ervtgv92y2qAvdhP+tc9hXk0+0zAtniHCWAdryaj/LkJfjUxOJEWLOjJQRdZJkIDAGJUF4NwLWfJBDbMKIiBjfL7SsGi0Gi6frjJBPCSzMAtD1+GOUSywQpikFkelpzbRkYMAESuEANvozeUh7QYTIMxpg+2jLfG7zABrCYGczz6uyXJ1aSYtCj9KiU5t+bszCDWyLseKwKA6mIwDf1zSr/0vK362JLEMtE09HYjYa8RjtnHi4E4fw8jqb46FEsa8kNzzEBHbCr57kTQA4C3cMUG8nNdyEqAW2J3k/v+WehtIDs7zY4eZDxxVI/7PqMFABBw70dLHV55tPQSmvAqAMBCM2IgLArtsGtHd6ERrwIAzHNTYjDz5ygAAArRlhi0BF4FgIZADEqBVwGgIRCDUuBVAGgIxKAUeBUAGgIxKAVeBYCGWMUAAAC+GTKDUuBVAGgIxKAUeBUAGgIxKAVeBYCGQAxKgVcBoCEQg1LgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINSVPCqeB6keA7luTZzzqRUzPINTlgCwHtBDEpRx6v2WGNFAw4dRxz+K/aol4gjVAaW3xoAFAIxKEVNr+aE48xbemYgCokiRfl5hi5UAFAaxKAUlcUgOeWPVYy1MEtRPpZJiB1l5hBvzwweGy+2A/BVtCUGHHv5xIva4d3wWg/u1iCsFWs2FsdFOXFLwrcgjucVEAOAQzQkBqPplIgv371wklh5z2BWo3bywm3Eu3uiWXGQyfKkKoTy4+H+oBEDgEM0Iwaj6eSkIMPkS8QgfOkWHrpQNCZML2L9hgNQymMti+/i9/c3NPBUHzEAOMQVYjAN/fKJt1N5W/KM5p6RDfS23IzLpZMPuGpweVy4RAxmKfKGyzKxubz4MpkZxCxjhDbKGMR3EYrBI0BsBABi1BcDu54zDf0Su58rPKPZ5GDbBJgGM0z+pH8zG80+E7At3mGSeMPMIFZ9jj8mNOeJgd6RMoBkm56lYoAGALxCdTEI13Lc1X4bztcEYDW1xW6lLlwUGk3XDzeZJFYTA3GanxlhRTOl7iExCBsUR5LTbyaIAcBprhADb6P3mQ74UX9RBDOGYjANxpg+2DLeGr/DJLHaN5CTcVNZsQnDdxiRxYUdcZKeo0axWsmxAUBRqovBNPTP2L/0PJrOWSfaLxOtJbt8Yhp6u5Gw1wjH7OPFQInRYkzXGwkzjENJg9KjKDmxW7E3CACluWIDeTRbvHITgq7rnN1g38bbQO7XjYRdKzlPHNWjiWe0AAAWvuLR0ktowqsAAAvNiIGwKLTDrh3dhUa8CgAwz02JwcyfowAAKERbYtASeBUAGgIxKAVeBYCGQAxKgVcBoCEQg1LgVQBoCMSgFHgVABpiFQMAAPhmyAxKgVcBoCEQg1LgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINS4FUAaAjEoBR4FQAaAjEoBV4FgIZADEpRwaviwZCVDxCOHWkZM0vaZx7YCQDvBTEoRR2vhqfJizYKr/eul3jlygHI7tnL4TnMAFAUxKAUNb2qB81Ch86LohKTmdAgZ0iIAUA1mhODZg47qywGypS/nBh412Kn3pCSIuEZv5jBPDbOVQf4HtoSg9F0SsSX714VDkp7VYmwc15cFiseGoA3mNhd0TiWQIRjez0/QAwAkrQkBqPp5KQgw+TzxGDBFYNYNqCE12icnYa+67pO097MLhIdSe/Fa0Ss+/Pz03Xd7+9vrDX3J44YACSpLga7KLO96My4XPbDNI9muT+YfTiygV6sNXtG89XhoL4YhC/dQv1ij11y01Kx2AQ/NoZw5UfJA2Iit/Dz87PIgL3w8HJBxAAgSWUxEKLMaLrOjPM8GhvFlxBvxvVyMdxP+oVatqoZ5xuEg0vEYJZCpxtnYyF4xyLHG7FsTE9Ewk7FHnNeHhWDR4D8BgDAoa4YRKLMaPYx56kAz+huo/y+sSBSjabrhzuEgxtmBrHqPhnrcXO2AnkvlcwgplXiIPVlIjQA4CjVxUCIMtNgjOmd9YgsMQhq2S76YbpBOKgmBuKkW4/UqVtb3jXPyvs4LQbJRjIHr4MYAByi+jKRH2WmobfLQNstRwyeGrATEqmW7WF7/fFioEycPTMFuc4zh4vmCHo7RzMD9+7RNwgAr1N9A3kXZZz93618ywI6x8zWdDeQg1p7o8up8Gipe60EWSWYvhJnY13oIV4XCbcw8y0AwFu45aOl7jKRwyuPltbndl4FAIjTkhgIi0J+tRt9Cfl2XgUAiHM/MXiuEYmRnT9HAQDwfu4nBp8CXgWAhkAMSoFXAaAhEINS4FUAaAjEoBR4FQAaAjEoBV4FgIZYxQAAAL4ZMoNS4FUAaAjEoBR4FQAaAjEoBV4FgIZADEqBVwGgIRCDUuBVAGgIxKAUeBUAGgIxKAVeBYCGQAxKgVcBoCEQg1Jc6FXxXLDkwWGiQeyIsRJHj+ltiodrAsC7QAxKcR8xcE+R1E8VDjVAlw3loE2dWJvJcI8eABQCMShFaa8q4fVcZhBrOadxvbWkQSgkuv3v7++hMQBAEsSgFDW9aqfVYQQXI7s+SZ/jmUGsPDm22C1lAMqt18XgsfFiOwAfQ0UxeJ5n2UWOtDza3K3Pv6wvBrGX8z62igE9lJBYU3NEe2Lh2xorg89px23t5+fnLckBYgBgqSYG22n1qyS8GK9Ho7Ug3608GaywTCRex16GsV7UjNiFa6NUVMaZTCZyso0cMfj5+VGyB/cXADEAsNQSg2nobYB2r08xmk5OCjJMPkYM5iCmx6b8obEiBjHEHsNeYoMUzZTu9DxDEQN7S7TxZgOIAYClihi4C0RmDITB3gjtl8LRLMnEYLquHyYb6K2dGZdLR2JcNbjk819fDMQStzzfTJ/OnxaDQ5a6QUwPFDF4BOjdAXwV12YGz/Wc0Vg5kAqXWG+lwRGOzWY0+0xgGvrF7KrJYJ09g2SUPzfBryYGJ9KCBT056CLLRGgAQIxLxcBd27fBWyx0qtsyy2j2iYUt7YcLJ4OXZAZuefgyzCGSDb5dDDLv5nRxbhsZMQAQuVoMbBB3xSAs1MRgGowx4S7EJipXTQaricGcmn3P0rP8sVrJtZpY+/nG4cCSmUGskXc9VgQAly8TOUtCz2WioNCtvlsm2h5S2mmIb/aRYiDO38NIqq8OxZKG/NCsrOqExvl3k9mJBT0AeAu1N5DNuOwGbws79pY7sfcLbRUb992dBJtk2Ebn2d9ZuAC+ygcADdHkN5BfebS0Gs15FQC+mSbFQFgU2jqKFWoAACAASURBVGHXjq6kQa8CwPfSqBjM/DkKAIA30q4Y3B28CgANgRiUAq8CQEMgBqXAqwDQEIhBKfAqADQEYlAKvAoADbGKAQAAfDNkBqXAqwDQEIhBKfAqADQEYlAKvAoADYEYlAKvAkBDIAalwKsA0BCIQSnwKgA0BGJQCrwKAA2BGJQCrwJAQyAGpajgVfE8yOQ5lPlt5pxJqZhlGoitZY5fPPPSLXzXoZiZ7XAGJ7QLYlCKOl61oVPRAPFMY/G0ZPFfsUe9JP/uHKhXeKHgBd/lZfjv0XaWEsVpYaexdk50DXAJiEEpanr1dDjWI7t4NxSSmLQk5WeWQn9mpwtvyQySjSSxxuciO3oAdwAxKEVlMVBibo4YiNXFuO/VjXUU6zQUg7AvMe671b1puw3EXvUlM/DMQjLFwDblpQXiyPUecwZwjj9//jwej8fjgbrAUeqLwWi6rutOnEx593MuPUp71Yva4d3wWg/usxOa58hUvQvm/slOMweWrCjejYVsb56uRNvYLbvKlB/cxTUrxT5nGOf48+cPYgBHuSIzmIb+sBiMRqsi331snBjj61TeM5gzJuk5gT7UgxPNznvh8YiNX+xRGcAc3zPw9OAVMchfcUqIwTT89fPTdV3///4VtpLTuK5GbjaAGMAJ2hCD0XRyUpBh8j1iEL50Cw9dKBojhnVdNsTBiCV6omPLxSm/V5i5jfwuMUjZj+avYfqd53n8x08/BHKQ07hi5i0NIQZwgqvFYBr6NbA8Q/mzrOu6rh8mG+jtHTMul46muGrgCsBXicGsRtswjitz8GTjbxGDnMbF9mNRXnm+SBzPoWUii7LHIAfu0bgtmf/x678iBo8AlABOcK0YPJd3RtM5AX+52sr2k/5n6T4TsPW8paGvEoPkMotYfY4/JjRnx+vwbowTrYUvxZl4GK9zHjBVNpAzMwMlQVktRvNjxtgQMh95EkVoAQ2A17lUDNyl/p0GLKVr0fPOxmi6LlwUGk3XD+EsqcY7kqgmBuI0P2eSHjNLztBjzZ7IDDIRRW6OL9O/stbvFnqSIEqLnltsr0bz87MlBP6vxlt2jxEDeJGrxcDGdDfkLw8cbQE/EINpMMaE2w6biFyrAc/h1PoGcjK8KpP0MNaHAV2Z74vjCa9jNmEXoiAp5frTRHNeZhBrx92LdvUgbD+rzedK0W6ViC8ZwE24fJnIWSdaI37wpOhumWga+mfdnUY4Zt8gBkqMFmO63kiYYRxKGmK6kj8wRQ9Es/Cpf/0hote/RJbYFXDqegMDaIKrvmfQOdP+ruvcrWBrYMu9DWSbVdhW1mqpJ46qwlf5AKAhbvgN5HF4JgZrHvDKo6VXcTOvAgBo3E4Mdt8fs2tC4aLQjqfdfbiVVwEAdG4nBrtlol2E589RAACU4oZi8CHgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINS4FUAaIhVDAAA4JshMygFXgWAhkAMSoFXAaAhEINS4FUAaAjEoBR4FQAaAjEoBV4FgIZADEqBVwGgIRCDUuBVAGgIxKAUeBUAGgIxKEUFr4rnWYanS9ahdI96+/mH1IfHcCrnU+qHZZ4+VhPghiAGpajjVXtesaIBynHEr0fwatqjdBE7zv6EpagWMeWwJy0fEhiAe4IYlKKmV/VYrNx9VxDvnMPr36g0YhceXiy2R9XHwve7AndmLgLQCg2JQfSkM52rzkGrLAbKlL+yGLyx8ZwZerhWo6zeZOYQOZphK4bGp1XhsXGuOsArtCIGu6OR31K39AevtFfdoB+GXTEoh1LxYrw+LUL57YvXsXC/xGUx+p9Y/3FHIq4m2ZbfmyIgBnAJbYjBaLozSUFGA+2KwYIrBrHQGYZ+VQymoV/CoxmXywwVFhuMiMF2xnU/TFtnsR/uCTHwArR+N8bbM4NQpTzc30PEAC6hkBgsH/h+mLZPvhndILMY2YIt3MTCkA3lepzSooyrBnU+ePXFIHzpFuoXHqNZfDeaDBG2QXDOEoPlZ+P8ZOJdZIqBGIjFJSPXLLavkElMWpSsIiZCXoaKGMAlFMsM1rhtRnu9BO5nINji82jcoC6Eof20XotT8Shj71T74F0iBrMUgt3Q7wZu0dgymi4+ZZcH4LasN+7+Fih9dHH0zGCOiIGYNyjSktNvMjPQxeAREHUHQEmKisEW4mPXoeU8z0EY2kV4ycDvVowyo+n6oeYH74aZQay6xDQYY/wfVbS6qC5Kv9tGzjQYrYNYa8llopilF6+TG84eOYtOyo50rGU0AO7ApWKwrevsl3v8MBSIgR6nIlFm20Wu9sGrJgbJQHxcDKahX7y7pWEZw3DHY1Gq6LsF2UM9JgbuXF4P5bEnVk9kBjkgBnA514mBfcZnlxlIYWi3TJSOU3KUcRr5GDEQ8wDRTCEwdxb1nB2fnJHMBzKD+ehjAYoYKIE4J7gn5/uHtqP5wgE0StEN5CWMpK77vu+W6BMLQ94GcmDgLxsJUebl55EOU+HRUvdaifJKUE4KyYnBZDMORx4WVsQg8zFTr0pyO8ETD69B5evHsX4B7szHPFrqRpYwytTXAv5QXYLEdgEA1KUNMUgsXu93FYIoY1eWqtKCV6/BPnd89UAA4EkrYjDn/DkKMcp8w5+jAAB4kYbEoDHwKgA0BGJQCrwKAA2BGJQCrwJAQyAGpcCrANAQiEEp8CoANMQqBgAA8M2QGZQCrwJAQyAGpcCrANAQiEEp8CoANARiUAq8CgANgRiUAq8CQEMgBqXAqwDQEIhBKfAqADQEYlAKvAoADYEYlKKCV8XDv8KTzupQuke9/cyzJ8WDyZTT0LyKOQcsAzQKYlCKOl7ttmOQFQ0Qz2V8l2ZU0x6lizAQK2KQb5kpGPkCA3BnEINS1PSqHouVu+8K4rad9yqN2IVH7KR7MS5nBm7vkGRRMDJzEYBWQAxKUVkMlCl/ZTF4Y+Pi+/IieLhWo6zeZGYGh8QgFJjTqvDYOFcd4BWuFgP1bOON9IGXkbavPGe3tFfdoB+GXTEoh1LxYrw+LUL57YvXsXAfruwrIVtRl+WlIgZuR29PERADuISrxSDNaM6fnS7XrTP/qrxnMMdDZxj6VTGYhn4Jj2ZcLjPcLzYYEYPlpOq12aWHmNSfEAMvQOt3Q9ycQF9TOpQZiPvPLu5vI2IAl3B3MRhNOnE418DniUH40i3ULzy2hG00Gd53c4KszGAa+ucPResiUwyUYB2z9GK9uHaUv0yUuRIVEyFvaoIYwCUUFYNlDtgP0zYZNKM77wwM9pZrC8uVPl3VJpuuGtT8yF0iBrMUgt3Q7wZu0dgyGmXKLg/AbVlv/CkHqtx0cfTMYI6IgZg3xML3u/YM9HYeAVF3AJSkcGawxnAz2usliNtgMA29G8KfhWac/Wm9Nl2NTzbtncrzrxtmBrHqEtNgjOkTS0ShqGSKwbaCNw1G6yDWWnKZKGbpxescMQj/9VrO2TPQl4nQALgDFcRgiyfidXjh3N1F+Hme1elqdLI5mq4f6s+/qolBMhAfF4Np6JefRdb+/hxJPlQxSOwWZA/1mBi4c/nkrD80U1pTMoMcEAO4nLbEQJ+uRiab2y5y5flXtW8g6zF3PvylMyeD8xbtUiOZD2QG89H9IEUMMpdoQrP8zGAOZveHMgOA+3NrMdiHi/R0VZ5sOo18khh4YVeJ8sczg5cGk804HHlK7GhmoKzMHP06gvJsUuyJVfQAmqPCBvISn8Xrvu93/0uW7gZyMF31l42EyebLzyOd5M7PaN2BxHYBANTlAx4tdSeY4WTzKi1ADKLYR8euHggAPLm7GCT2MPe7CsFk064sXcC9vQoAsOP+YjDn/DkKcbL52X+OAgDgjTQhBk2CVwGgIRCDUuBVAGgIxKAUeBUAGgIxKAVeBYCGQAxKgVcBoCFWMQAAgG+GzKAUeBUAGgIxKAVeBYCGQAxKgVcBoCEQg1LgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINS4FUAaAjEoBQVvCqeBBkee1l5GIW6zjwDmRMoAc6BGJSijleXECkefezaKLxlAHrJW1pWxCB5qP1bxgPw2SAGpajpVT3+KndfDNyirhRSGn3KL+YHyABAPohBKSqLgTLlLyoG3nVmv690tOBN+WOZwekeHxunWwBoi1bEIH3ypciFJ1+W9qob9PW1GmXO/l4xyFzYOd2RbVAM/SUyA8QAvocmxGA0/vHGr9atMO+rvGcwx2flYehXxWAa+iWWmnG5jPs+s5c9y3nVa7NLD7rO50tXTjawyIZi5v5WIAbwPTQgBqNJBIvTDXyYGIQv3UL9wmM0S4Qejep6fWEqGrunoX/+RBJdiG/E5dDTRFYtYrLhTREQA/geyonBMgHsh8E854ELduq5RoT1dT9M7qRxmzPaUK7PWLX5pqsG1T7ql4jBLEVMN/R7gVuZa48mOWVP5CJK4085SGmBrnOWMMqL4V6/+wjQRgbwWZTMDJyQPA39Fruf6zbb9HM3VXQC9zgMkzet12as8fmmvVNz3nfDzCBWXWIajDF9YnkuU4Qkll+DaTBaB5kCoyQHoh6I5QtoAHwtpcVgCyY2Hrtr+HsNWOf0pu+3qzU/2Md9ZcYanW+OpuuHyvO+amIgTvP1MJ26NQ3Lz8DR62T1g2KQ3i1Q3k648hPLDE48U4QYwHdyhRjYCOBG+iX+TMMwLsnANAyjZ7LaaTPWyHxzk5qa875q30DWY+58+EtnzhrctvYWC9l6U6mB5W4Ghe0oD5JaDVCm/wAQUkkM9jmAs070jAbT0G83HJPAJjFjleebTiMfIwbeZFmJ8qeWic6MwRtPqvY4ZDwiFmsnNuXnK8cA5yi/Z9AFk0tb3vvzd7tb4Hw9wNtADmas/rKRMN98+XmkM9z8Ga3LSWwXAEBdai0TvUBGKHfnmOF88xItQAyibM+ZIQUAN6IBMUhsY+53FYL5pl1Zqg1iAAANUUwMnmtEb4nF6T9HIc43P/jPUQAAvJEGvoHcKHgVABoCMSgFXgWAhkAMSoFXAaAhEINS4FUAaAjEoBR4FQAaYhUDAAD4ZsgMSoFXAaAhEINS4FUAaAjEoBR4FQAaAjEoBV4FgIZADEqBVwGgIRCDUuBVAGgIxKAUeBUAGgIxKAVeBYCGQAxKUcGr4pGQ8cONb4o+VHtXPNrTPeHSO/BSPCc5WStZrlty6Ca0C2JQijpeXWKlcir9HAmjt9KMTD3w0KNwrMT+myktrqXeoP33yFsHuAuIQSlqevVcMFVvrcdMnzwbSD2b7l2I8dqG7DCIh/Faid1u495FzFJvEODm3FMM3nVK7jT0xlx02FllMVCm/MfFwB4luj9TNJNVRxL1MpOVLkh9bHwXw7QS8d2cIEwOXPtkL3OgQGGb51ThsXGiLsAr3FMM3nJ+8mjWFuzFjtKfutJedUNnGNNFMQgDriwG7rnRozkzxT8lIuJ4xDfoRXwv9Hfqgo+YJSirTHpmELYZszwEYgD1+Vgx2AexaEhrVwwW3FgZywbC0K+LwS6Su8KQzykxEAdzQgxioVnUCXEi7241JwVD0RjPWE8X3F9FxADqU0IMtkWewSxLPdPQrx+4NazYVaB1QcGJG0/b5zLRs2yxk6pbm7UpP/q7r+t86uqLQfjSLdQvXHwxODHHP15LzlGyl4m8W0tdUTNyAr23lBSzCQUgJgbJpMFLUhEDqE+ZzGAJzV5cHk0Q3/116eeCztN4X7YY+tU3W9tUkAnYO9U+dZeIwRxfaZmzl4kSmcEmwdZmHILU4aAYxJRgfiEziJnFninSa82ROC4qxFExeARkeQ3grZQTg2BxwS0Ur90IYgvdBf/dvqbWlBCLRtP1Q81P3Q0zg1h1H23PYBqMn7AJy0hHxEAZ3vyaGHglyhT+xJ5B7BGmc8tEaABcThUxsHPJc2KwK3xJDKaKn7pqYiBO8/VcIXXrtaeJjtTTlWDOXibKFAMxaothOiYG+v6EOIBMEAO4lvJiYKf2ycxgEY3nQtCz8LlO5N+NXIcbxk7Jx4iBOGsWzRTkOtu0/8wm/lP700+XJsev3E3uGYRm+SE7FvpjuwuKDUATlNtA7jo3xHdd1/f9WuiuOu9XoN3947Bwt/8cVveuoxvIdajwaKl7rUR5JZ7qgbgo+vhFM8vP/g9LKHsGYaSenZDtdapE+bBQf4gIPYDmuOujpS+T+WhpwQF8olcB4FP5WDFwdhvOPSr/cvef6VUA+Ew+WAzm7/lzFAAAL/LZYnAleBUAGgIxKAVeBYCGQAxKgVcBoCEQg1LgVQBoCMSgFHgVABpiFQMAAPhmyAxKgVcBoCEQg1LgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINS4FUAaAjEoBR4FQAaAjEoBV4FgIZADEpRwauHzinLPPus3ACURo62o5wjFp5fJh5YljySLP9Q+/AgzGSD+vg5Lg0uATEoRU0xyDn2Mvw3bE0h1vtbmoq1EzPIDKaZJcnw7Z2yebTxUJncQvH8ZM5ShvogBqWoLAaxi9BYvHuotVBslFCejPL5ltbgLZlBjqXendeCpxyddEJyeHKy0hdiADVBDEpR2qvuRFuP4+HE3Hup1BVbU8Yjlue/I+WWgj7N98KrW+vE0o3ScqzBUDNE4/BNiQlEPn/+/Hk8Ho/HA0WBHJoTg9F0Xde5J1lOQy8fdj9edODl2vudMgM3Uis2h1oLNUYfZM57yTGORX9xpi9qhh7E52BdSIzUYTuKLIULTck9Cfd9vRLN//z5gxhADs2JwTxPQ/8Ug9F0SsSX7z42yo1xvpMYdE424JWcaE2sIt46oRmviMGcHUAzl4nC1pTNBsU4thkgthbqgZjrdGqu4AoAYgCZtC0Go+nkpOBJ1OQzxMAN9GLYFQXgtBjEQnws1se6EN+LbuCaxZZ3wlWgWJTvUpP0OU8MRCERI77YSL5yKKPyWFaHEAM4Sjkx2NZzBrOu6kxDv35qlujsLvjYa++icyL5s75Ta7ltb5lxuXTyAVcNXAFoXQzEiK8Yhy8zC8Uo/0q/upnepr17IrbO++WaQpnBHAR0WTbVHsN2lFG52H0CC0oAmZTMDJa4vEbi54rNaDonhm9h216vgd2Ma6FYvx8mf9K/NTuafSZg2/CWhloXgzljGWcO5vKuvRj39Y7CBsPGYxWVcWaKgXsrJgZekNXjaayd2K1MMYiVxAq9keuDt8axKO9lBgCZlBaDLda7q/c2PEfFQCzcYvxW6JbNWydduCg0mq4fHgFF3rLb7aViIIZXPeZmRuGcgH6oi9NmC8oDPDlRPmmmRPx8MVCeLBJHlVzC0mFpCE5QUQx20byEGEyDMaYPtow3HaqjAc9ubyMGs/TNgJhNctafnxmclgdxbKLZnIqzycxgjky0Y7NyzyYW2ee4GCQbFJebYlUA3kUtMXgu7rjLO06+YO+LYuBO+m3hbploGvqn5U4jHLNPEoNkjA7NQg2IXYd9Jc0yBSMcT7JT0Sx8WNO7G5vU24D7Iz0/qi89iUrjtR82pbsi1vvr+QHAIUpvIHfdLrLvClyjru/73WfEjM+bNo0IDdwN5E0hnnXWLlJPHBWhsWe0AOC7afDRUodXHi0tTbteBYAvpG0xEBaFdti1owto2asA8HW0LgbzN/85CgCAd/EBYnBT8CoANARiUAq8CgANgRiUAq8CQEMgBqXAqwDQEIhBKfAqADTEKgYAAPDNkBmUAq8CQEMgBqXAqwDQEIhBKfAqADQEYlAKvAoADYEYlAKvAkBDIAalwKsA0BCIQSnwak3+/ve//9d//RcnwACcBjEoBV6tCWIA8CKIQSkqeFU8D9I7WvKVNmONdNkHFL/S+yEQA4AXQQxKUcer3XassaIB+hm8YVPev2KPeoneaWiTbC0JYgDwIohBKWp6VQ+gyl09sot3w7CuS1Hm8HTZSIIYALxIdTHQz6lcuenhZYeoLAbJKX+sYqyFWYryYbM5HR3Sqtczg8fGiXYAvpYbZgaj6ZSIL9+94ee/tFe9qB3eDa/14G4NwlqxZjPjuFKer1s6YWZwq18GgPtzOzEYTTJxiJrc6vNfec9gVqN28sJtxLt7olm9XGxN6cgtjDW1iIH7C3CrXwaA+1NBDKahXz7F/TCNRr6wS0c20NtaZlwunXzAVYPbfv7ri0H40i08dKFoTJhe5PSr1NJtxNbCvYG///3v//znP2/7ywBwf8qLwbbMPw1mmJYg328XmwhMQ79c7Cf92/7CaPaZgDX3loZu9fm/RAxmaU4tBmXRWHyZzAxEy1lSmnBgYehPphGiGPzzn/9cxOCGC4YATVBeDNygP3tisM32t2sb5S2j6YQN59F0/fAIKPgujnPDzCBWfY4/JjTniYFYkhSDnDY9y5hBmBkAwCEq7RksimDGo2IwDcaYPtgy3naRb6gBlmpiIMbczAgrmil1i4pBviqEhHsGAHCIestE6xKQKgb7ZaJp6BeD4HFUx+y2n/9q30BOxs1OJbRU2lfqhiM5JAbJsenwPQOAF6khBttHe5WCruu6vu+fhdZiuXY3kDeF2G7bJpNfVbicCo+WutdKJFWiqhuvvdgtthBrNuxRR6ylvMEkiAHAi3zUo6W34lZe/XgQA4AXuZ0YpL6jbNeO7s7NvPrhIAYAL3JDMZj5cxRwFMQA4EXuKQafAF4FgIZADEqBVwGgIRCDUuBVAGgIxKAUeBUAGgIxKAVeBYCGQAxKgVcBoCFWMQAAgG+GzKAUeBUAGgIxKAVeBYCGQAxKgVcBoCEQg1LgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINS4FUAaAjEoBQVvCoeDHniAOFYm7FGushZx6+QbMQ7LNPCGQYAbwExKEUdr3bBafKiTfI4Yrcp71+xR71E71R/L8m7rgD8/PwgBgBvATEoRU2vZobRnFt6ZqCca68EeqU8U6hmxACgME2IQZOnYFYWg+SUP1Yx1sIsRfmw2VhHOdc5IwyH4Y3znBg8Nk7UBfhI7igG0zA4AxpNp0R8+e4dPuqlverFx/BueK0Hd2sQ1oo1G5u8Z7agF8Zs3pgZIAYAlvuJwWi67pkHjKaTk4JdBdnks8VgwRWD5GQ8J9CHenCi2UwD11JMTTwDe62Lwc/Pj5IxuL8ViAGApYIYTEO/fJbtFN6WLIWjWS4G48YCM85OoLdVzLhcOvmAqwb3+ajXF4PwpVt46ELRGDFei/2GA9DfhVLi9uiNwQv6Vh5EnfDyRcQAwFJeDLZ1/Wkw6//9Fsnt5RLfn2F/i+37Sf+WM4xmnwnYGrf6qF8iBrMaWMM4HpONnMYVMRDm+REVSY5ZbPz39zcW9BUxeATMALBRXgzWOf0Wv91YvxODbarvGLi2C6PpunBRaDRdP9zto37DzCBWfY4/JjTniYHekZ4ZiHd1SbNicHSZ6A6/GAD3pNKewXPq/5IYTIMxpg+2jLdd5Ft91KuJgTjN16O2bqbUvY8YzGd3j+/zGwJwK+otE21rPqPpxGUiQQz2y0TT0C82+y3mvdl9PurVvoGsh9o5tWgTWirtH13t0csPVfGSmFf0AABCaojBFjqcEP/EbiB3m0asL/thCjaQt7JdczlPHF1AhUdL3WslyufEYreKqAFip94Acoaql8dkZpYygwX0AOAtXPpoqZsQRHjl0dJrudcDuwAAKncXA2FRyG/ipl9CRgwAoCEuFAO7OpSc1/PnKAAAynK/byB/CngVABoCMSgFXgWAhkAMSoFXAaAhEINS4FUAaAjEoBR4FQAaYhUDAAD4ZsgMSoFXAaAhEINS4FUAaAjEoBR4FQAaAjEoBV4FgIZADEqBVwGgIRCDUuBVAGgIxKAUeBUAGgIxKAVeBYCGQAxKUcGrsRPB9HPHjjaYNDvX17uqA8BbQAxKUcer9ohK/cBIBd0y1qNeoncaq57TOwAUAjEoRU2v6nFTudupRyWLJWGwTobvQ8PrpPOWAaA0NxeDJs84W6gsBsq0OkcM8uf73nVOR0kx8KQlp5bCY+NcdYDvpIYYTMNwqoPRaCcky3fvEwhKe9WNoXooV6bwnlmMWLOxSb0ymNhbEEcr1srkDr8DAA1RXgz0A+3VeqlqUZM7BILKewZzfJKuTLqTVc41q5eLbyGnlrISteD+3O/wOwDQEKXFwJ56v4btaejX1+u0fjHoh2mzXMO7DfS2hhmXSycfcNXgboGgvhiEL91C/WLOzgyUjEHpV6wVjiE2Nq/89/c3dIWXEd7hdwCgIcpnBtPQPyP2Fr1H8wzqa7Q3o2u8n/Rv2cVo9pmANb9hILhEDObIhNpeeBH5LZmBOIw5HtZjw9Nr6WLwCFB6BICQymLgFrpi4F+HlUbTCctNo+n64Z6B4IaZQay6vc7JDJRmXxGDTFVTmrrPjx6gRaqLwXPd6JAYTIMxpg+2jLdd5BsGgmpicGiaH1Z/y7VYki8GybeQyd1+BwAaoq4Y2CeAUpnBfploGvrFINiMdszuFgiqfQM5GTSVKf8JARDrhpbzETHQqwNABSo8WrrmAluMX170/VpmMwUzzt61u4G8qx1sQdyRCo+WuteZUT7WSMwmXzCS41FURG8NACpw3y+dvfJo6R24p1cBAETuKwapbyjYtaObclevAgAI3FkMZv4cBQBAHW4uBg2DVwGgIRCDUuBVAGgIxKAUeBUAGgIxKAVeBYCGQAxKgVcBoCEQg1LgVQBoiFUMAADgmyEzKAVeBYCGQAxKgVcBoCEQg1LgVQBoCMSgFHgVABoCMSgFXgWAhkAMSoFXAaAhEINS4FUAaAjEoBR4FQAaAjEoRQWvxs6PPHds5ItHECcPszzdr3s2p8jv769r//Pzs5QsF/alx8/Pj94OwFeBGJSijleXQJk8XjjzOOJX9EAM4oeOPlY6tW/TlsRC/ByIgXeRlBCA7wQxKEVNr+pRW7mbLx7iLaWpnCif7CLWQo4SKGahSOht3uGhMQAABxxJREFUAnwD9xCD0SwffjPOo6lzxv009MaUPDuzshgo0/CjYpC85RrkaEbOwLpg7h8TA681ZYJvl4k8y7eLwWPjXHWAO1BDDKZhUDsYTbcG5dEsilAa2+Oza5e3fLZLe9WNrfo0XJl0h7eU6koX+svM61gL3oUY1u3L5W7mctB7MwPEAJqmvBiMJhHfp6F3DCpkBqNxB7R/5XBzMVhwxSAZc5ULrzVxIq90Ib48kRnExua9TTEzCLeLxfjuJgrJPWSrLnME95cEMYCmKS0G2wKQFYRp6PcFW1EwQ/ctl6bsjH653i4Gs96ytWx7W8lW4Ed/9/UbP9v1xSB86RbqF/rLWFxWmrKFupwoIhE2aMuVcK+LgZs6iDrh5RnhapKLlz4iBtA05TOD3cR/vyK0n5/vQ7hkOQ29NbDXS6xfm7K1bK+jeTbTD5OQCVjT9362LxGDOR5DZ3WZKHyp2yRjt9hLTnexBt1yfS6fzAzeIgaPgBmgZeqKgbtEv18dskWdDdmhZVQMYpN+NzNZUwyh29F0/fD2z/YNM4NY9bC15HxfGYN3K2xTbEe/G5YknxTyXoZfPghFRckkwo7mYPYA0DTVxcBeP8vHwVkhWlVAtMwRA2+1KZ4H7Gz6YXr3Z7uaGIiBW4+zsVvhco0yPc9vypWEWJUcqbD/2sCtLxO5JeFXDZKZQQ6IAXwM9ZeJnNUff21n3i3v6Jb2vq8QT+UZt3Z2JWL2sJW0JQbKlNwzUwgb9K5jNjn5RygDoUiIIxE7cs1iazjKpnHya8l81QC+mQqPlq4rNWvADjd453EYRrtZ/CwWLJ1Vn77fauyNgh3roETbQH7n2y7/aKl7rUR5MUwrtxSRiKlF2GMY9JNvQRmAZ6Cs3mQuH4V3Yw0CfAn3+NJZXTIfLX21ly/zKgA0zTeKgbN2NA19qS8hf59XAaBhvlMM5g/7cxQAAC/ytWJQHLwKAA2BGJQCrwJAQyAGpcCrANAQiEEp8CoANARiUAq8CgANgRiUAq8CQEOsYgAAAN8MmUEp8CoANARiUAq8CgANgRiUAq8CQEMgBqXAqwDQEIhBKfAqADQEYlAKvAoADYEYlAKvAkBDIAalwKsA0BCIQSkqeFU5tFI56rIJksdkxsg5EjmfzNbccg5ShkZBDEpRx6vddty8ogHiCck31wzxDGSPnBPtYwffKw5Ror8uBmKzCAO0AmJQippe1WO6cle6NQ1913VdF54CF78TMJoMQ0WW9JdzJO6HUdgtFCfv+kQ+x/K9uQjAVdxHDLLCR7Tegney/Ra8OjNWOOfSH1ddMQhx7yoVxfLFqZ47R5P+AU3DMG5X/ZGfZhekOHZs4rvLCfGxUJ4zkfdURFEF+zJs8JwqPDZO1AU4zX3E4HD4WGs4IWs0brDaDrtfJWG5MRqpixIfv9JedSNmGNNFMRDjrNj4aMww9Hs1GI0xovdck+eP45QY5LzUBcBed/EFn1AqQhvPLBbo3Y7emyIgBlCZlsXAk4J53smB09poXLP9K4e2xGDBFQNRAOa9GMQuPEZjxv2PYxrMMO2k1OZdjptX1kys64dpK5RcHhuw+DKGLgzhxZy9xB/TDKUvPTMIJcrD/Q1EDKAypcVgt8y8vFjCQhBKvPBhJ/KOhbdm7c5DN1Y1eLbedcYYf4r7fF3u41dfDMKXbqF+4TEaM+4cPA1mmHZ51eZFNx2bnGxi/RGY0SvPGH9sYMvP0y0Js4GYSLw3M4gtE+VsPscyBi83RQygMhUyg30EWWNCLJRY0QgK59E8RaAfJikxcM3tVZAJ2NBU9ON3iRjMUhh1I6wlZryw/pwcH24/rSB1839Y0jJRPOeLjT/UM3fMyeCbs3+Q3DNwe3l9z0AXg0eA4CyAktRYJnqGiHFIhZK4GLgbxYsIKJmBU1GYlY6m64fSH78bZgax6iGbaNtkbf357cTg+RM5Lwax0eqZgbjeoj/5kxPNPbzMIEcM9Gb1ZSI0AK6lzp7BEkSeT5qsZUIoUcVAelgonPR7ewYxMZgKf/yqiYE4zddzheQtm8HtHyFyxMBevjszEAfmvc0ueMJnPiUGsXAf1qrzNBFiABdSaQN5GvrOm1TKoSR45uc51XcTgXXIXrO7p4kUFXFKmhYDZRLtmSkE5na/xf6E3Iey7I1NzPt+/7DW8mLYpN6MT9kXtg1EJYu9KTczEB/mUQKxsnCkT+3ftWcAcHOqPU30nGuuL/1QsgsZTtrQP/ch94+reC3tip3IZUZfDaKPE733DZd/tNS9VqK8GFiTtyogDlIcv1sixvo5+zHTUAnCu+FFMjMQdyDEcQLckzs9WlqMzEdL39zpp3sVAD6JrxADZ4lpW/So0OXnexUAPocvEYP5s/8cBQDAi3yPGNQGrwJAQyAGpcCrANAQiEEp8CoANARiUAq8CgANgRiUAq8CQEP8f4i9i31s9SevAAAAAElFTkSuQmCC" alt="" />

以上方法不做全部讲解,只讲解部分方法。此节没有任务,快快进入下节学习。

任务

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>Math </title>

 <script type="text/javascript">

 document.write(Math.ceil(3.3)+"<br>");

 document.write(Math.ceil(-0.1)+"<br>");

 document.write(Math.ceil(-9.9)+"<br>");

 document.write(Math.ceil(8.9)+"<br>");

 </script>

 </head>

 <body>

 </body>

 </html>

Math

7-14 向下取整floor()

floor() 方法可对一个数进行向下取整。

语法:

Math.floor(x)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAbYAAAA5CAIAAADV+pmeAAAd0UlEQVR4nO2daVSTVxrHUzZDZNEiaqGunYpTCharBAOEnQRQEdynjgenM6097fRMz5kznTozx+UUbeuu7BAgiCAECRSiIkKlKMhOCGTfSEIWQshCFhJA5sOd5nDUOnUYENP7++B5uXnu8j7e95/nPvcmQUxMTNTU1PT29tLp9AHIi0On06lUalVVFZVKhT6EQGwMBJTIWQIlEgKxYaBEzhYokRCIDQMlcrZAiYRAbBgokbMFSiQEYsNAiZwtUCIhEBtm/iSSTqfz+Xw+n/9fOwKWHA4H/PkLa70s5k0igVtYLJbVk6D8Cf887WdQIhAIBALBQvYkBLIAmSeJZDAYXC63tra2vLy8r6+PTqfT6XTw0M7sFxQyGAwKhXL//n0+n89kMmtra2tqamg02sJ8tudHIul0el9fH4VCaWlp4XA4FAqltraWx+PxeLza2tra2loOh8NgMIAZiUSqqanhcrmghEajUSiU6urqsrKy2tpaUD5H44RAbIz5kEgGgyEUCktKSpydnTdv3jwwMCCVSnk83vfff19dXW19YoHWVFZW3rx5c8mSJYmJiTdu3KipqUEikUgkEkjDHI1wNsyPRLLZ7AcPHixbtuzzzz/Pzs5GIpGOjo4EAiE/P3/RokWOjo55eXl0Op3D4XR0dLzzzjsIBCInJ4fBYHA4nNbWVldXVzs7uzVr1tjb24Pyhfl+A4EsNOZcIkHAmJWVhUAgEAhEQUFBVVXV9evX09LSQElmZiawYbPZfX19cXFxx44dW7p0aXx8fERExLFjxxwcHJBIZG9vr0wmEwqFT4yTxWKx2WwWizUXg/+FNzjXEkmn04eGhrq7u1euXHn06NHAwEDgurfffvvtt98G15s2bWpvbweuaG9v37Rpk7+/P41GUyqVVCoViUQuXrz44cOH4eHhQUFBwNLa/kv3IQSyYJlziQSPYnh4OBqN3rJli/V53rp1a2BgYGBgYFhYWH9/P5fLpVKpRCKxuLg4Ly/P1dU1NDT02rVrP/744+LFixEIRF5e3s2bN4lEIpVKtUadNBrt/v37jY2NDx486O/vn4vx/1fmWiJB+8XFxZcuXXJzc9u3b19hYSEWiw0PD+dwODweLzw8PCwsDISQAwMDQqFQLBbLZDKBQFBUVFRYWHjlypVFixY5OTmlpaWVlJRcu3ZtofkQAlmwzK1Egsc7Pz8/Pz+fTCYXFhYCiSQQCGQyuaKigkQi5efnEwiEgYGBjo6OoKCgzZs3A5uVK1eGhIQcOnTI1dXV398fFAYEBFgjIA6HQ6VSMzIyzp49m5qa2t3d/VJSbHMtkSAqDAwM3LBhg6Oj4+uvv45CofLz80tKSkpLS0tLS4lEIolEIpFINBqtr6+PQCDk5OSQSKTCwsLNmzf7+fkFBATY29vb2dkFBAT4+fkFBga2tbUtKB9CIAuWuZVIFovV1ta2bds2a/yIwWBCQkIQM9iyZcu2bdsePXrE5XKlUimRSATlOByOQCBs3brVw8OjrKzMxcVl0aJFHR0dHA6HTqczGIwHDx7QaDQ2m93T03Pu3Lmuri6blEiAQCBoa2vz9vY+evSos7MzWGUDR23YsAGBQDg5ObW1tfX29gYFBW3cuBGUdHV1jYyMFBUVIZFIJycnIpEok8l4PB4Y9sLxIQSyYJnzhTaTyZTJZJmZmSgUCovFlpSUpKen29nZhYaGYrHY1157jUAgKBQKNpvd399/9uxZBAIRFBQEtiNA7nLVqlWHDx92cnJavHhxa2srl8tls9n19fVnzpzp6+sTCAR9fX3ffPNNZ2enrUoknU6Xy+U0Gm3lypWRkZEODg5Lly5ta2tzd3d3c3MDF05OTmBHa3BwsKury9nZ2dnZmUajWSN3QHZ2tlgsZrFYLBZr4fgQAlmwzK1EMhgMGo12/vx5b2/v11577cSJEwgEIjg4ODExsbCwMDMzE41GIxCI06dPM5nMrq4uHA63ffv2S5curVy58m9/+9v+/fu/+uqr5cuXHzlyxCqRbDb71q1bx48fP3nyJIVCqa+vp1Ao+fn5L+v0+1xLJIPB6O3tzcjISE1NdXFxWbFihb29vaur6z/+8Q8UCuXs7AwuUCgUkEgOh/Po0SMXFxcUCvXVV1+BzK+Dg4ODg8OmTZsQCERqamp/f/+dO3cWjg8hkAXLnC+0W1tb4+LiSktL9+7dGx0dnZiYWFBQcPHiRQQCsW3bNhaLtXfv3m3btrW3tw8MDOTn52dmZoJ4Jy0trbq6urm5ecmSJR999JGTkxMCgWhpaWEwGBkZGceOHTtx4sTVq1evXr2anZ3d39//ssKf+clFYrFYPz8/d3f3o0ePolAoBwcHX19fe3t7e3t7cOHq6gokks1mt7a2urm52dnZbdq0afv27S0tLW5ubq6urg8fPsTj8RgMpqWlJTc3d+H4EAJZsMzHQpvFYl25cuXKlSsZGRlnzpxBIBChoaGHDh3i8/kFBQUZGRlsNpvL5XZ2dmIwGAQCYW9vHxUVBYSyvr4+JSUFh8MtWrRo165d3d3dYN82Jyfn5MmTfX19XC4XfOBkLgb/S5jPQz/e3t4pKSlg06a7u3vp0qVLliwBF4sWLbJGkf39/SDA5PF4KpWqtbUVOLOlpQUcnGIymQMLyYcQyIJlPiSys7Nz165dsbGxsbGxcXFxe/fuzcrKysrKOnbsGAKBQKPRXV1dLBaLw+FIpdLdu3e7u7v/85//dHNzS0hI4HA4eXl54AnPysoSi8VMJpPBYPT391+7dq23t/elBz7zs13D5XL7+vrefPPNlJQUJBKJQqG++OIL4JYvvvjCutDm8/kikejChQvgpfPnz4P9mYMHD+7fv5/NZisUColEAvZqFo4PIZAFy5xLJEilXb58+dy5c+fOnbt06dKpU6cQCMTmzZtDQkISExPBoXEGg9HT03P27NlTp07Z2dn5+/s7OTlVVFT861//QiAQERERkZGRCATiyy+/pNFo4MMhMw8/v0TmQSJBSverr75ycHA4ePCg9SQADofD4XBbt24FJa2trSwWC+QfrR7761//mpqaCpx/4sSJ48ePp6am9vT0LCgfQiALljmXSBaL1dHRgcfjQ38Ci8Xu3r0b7HSLRCLQLzDD4XBYLHb//v2dnZ0pKSmnTp2KiIhISkricrk8Hm/Xrl1RUVHt7e0L6nMg8yCRwDmxsbHbt28/f/78zp07k5OTgQNlMhmLxUpOTk5MTOzp6enp6QEJX+CxPXv2hIaGhoSEAM+HhISEhITExsYuNB9CIAuW+fiMNp1OF4vFkhmIxeKnu7OagdW0SCTi8XhisRgYg1efWfHlMm9fYwGcw+PxnnDgTM88fS15igXoQwhkwQK/L3K2wO+LhEBsGCiRswVKJARiw0CJnC1QIiEQGwZK5GyBEgmB2DBQImcLlEgIxIb5j0SCr3thQV4c8AUcVVVV/f390IcQiI2BmJycrK6uvn37dj3kf6Wurq6ioqKuru5lDwQCgfyfQUxMTHz//fcPHz5sb29vg7w47e3tra2tlZWVLS0t0IcQiI2BsFgstbW1KpXKZDIZIC+OyWQaHR2FPoRAbJL/SKRcLtdqtWrIi6PVahUKRU1NDfQhBGJ7QImcLVAiIRAbBkrkbIESCYHYMFAiZwuUSAjEhoESOVugREIgNgyUyNkyzxKp1WofP378cx1pNJrpn0ej0fzfe3xRY6vB6Ojozxn/EptnVtHpdFNTU880fk47T7/0/+oUYgNAiZwt8ymRY2NjAoHg8OHDKpVKr9drNJqZT/LY2JhEItm9ezcOh4uNjcXj8Xv37sXj8bGxsTgcLjk5WSwWj42NvWiPg4ODn376qVAoBHWtKmwVXDAMa+Gf//xntVoN/nz8+LHVTKvVTk9Pi8XiTz/9VCQSWa+tLT/R4+DgIGjw888/f2aDT1T5y1/+QqVSP/zwQ5VKZTAYnjb47LPPBgcHn/DATJeCWlbjJwb2c5329vY+s1OIbQAlcrbMs0SaTKbvvvvu8OHDMplMKpUePXrU+iSDVwsLC7OzswkEwrfffuvo6PjNN98QCITs7OzCwkKTyfSiEmkymSQSiYODw8DAABApnU63Y8eO+Ph4ILhAl8FvE+3ZsyckJASBQISEhOzZsyc2NjYxMdFqJhQK//CHP7S2tnp5ebW2tn7yySetra2enp4MBsNoND7RIxKJbGtrO3jwoLXB2NhY8IXqIpFIr9dPTU09/onp6emhoSFPT0+BQFBQUJCSkqJWq8FbCDADBq+//rpEIgE6OzU1BaRWp9MNDw+fOXMmKSlpcHBQr9cbjUYmk7lkyZInBvYEwMzDw6Ovr+/ixYug+ou6F7LwgRI5W+ZNIvV6vVAo/Oyzz+h0OgqF4vF4SqXS0dGxv7/faDQCqTp48GBycvLhw4ePHDkSHx+PQqHi4+OPHDly+PDh5OTkAwcOvFAgOTY2JhaLf//73xcWFgqFwh07dkRFRSUnJ3/zzTeZmZngfnU6ndFoLCsru3DhgqOj44ULF27dunXx4kVHR8fz58/fuHHDaDTqdDqdTqfX66urq3k8no+PD5fLvXXrFpVKfeutt4aGhqanp4FmWXvMz8+XSqXl5eUXL1709PS8cOFCUVERgUDIzMwcGRmRSqXbt28P/4mIiIht27YhkcjQ0FA8Hg9+ukehUMjlcmAWERGBwWCcnZ0xGExERER4eHhCQoJIJAKuALIIegRvA1KpdP369WBgk5OTGo1Go9FMTk5OzQCYrVu3TqFQTE9Pk0gkqVT6ohPAYDAYjUaj0fi/5UAg88DLl0gwS17dRcr8SCRY3rJYLA8Pj56enrq6Og6H88EHH+Tn56tUKq1WC4IaBweHL7/8Evza17Fjx1atWgV+7Qv8MpqDg8MTkRF4+H+uU5PJJBaLly1bJpPJtFotgUD4+uuvXVxcgChYFS0+Pn7Xrl3JyckIBCImJmb37t2xsbEIBCIpKWnXrl1xcXFSqVQulyckJCQmJkZHRzs7OwcFBaWkpPD5fDc3t8DAwISEhPj4eJFINDExAXqUy+Wjo6Mff/wxDocDzSYnJ3/00Ud6vd5kMsnl8tzc3MLCQiKRSCQSi4uLz5w54+Hh8fXXX+fk5FRWVubl5Q0PDyuVSmB2/fr1K1euLF++/PLly9evXy8sLMzJyQH/XxqNZmJiAkSaUqkUj8djsVg0Go1EItFoNBaLjYuLk8lkcrk8Li4udAZWs8DAwPDw8P3790skEuvbz/Mdq/4pei0qKsrKyiotLR0eHoYxysJk7iVSo7FOlyemDZglRCIxMzOzpKTkFZ0l8yCRYJX6xz/+sa2t7Te/+Q2LxQKJPCQSCVaOWq1Wq9XK5XIKhTI1NXX37t2GhgaxWLxhwwaRSNTY2Hj37t2pqalbt24BsbOOfGJiYmJi4pnDBm9aWCzWzc2Ny+WaTKbp6WmFQrFu3TomkwkCH3DvRUVFZ86cQSKRRCKxvLz82rVr5eXlRCIRiUSePn2aSCQqlUqlUllcXJyeno5AIBwcHPLy8tLS0uLi4ioqKi5dugRCTq1WK5PJQkND3d3dxWKxUCh0cXFJS0u7detWeXn5lStXXF1dmUymwWDQ6/V6vf7DDz/cvn17QkLCJ598AoJTpVI5Pj7++eefj46O6vV6g8EwNjZ24MCBHTt2xMTEoFCo6OjoHTt2HDhwAAS/QOJxOFxwcPCePXv4fH5RUVFubu533323bNmyb7/9Njc3l0AgKJXKkZERAoGQNYO8vLxvv/12pplCoQCefL5j1Wq1RqMxGAwqlaqjo6OhoSE1NVUikeh0urmYPJBZMtcSqdWbLJaJiQmLcUxnGLdYLON6rUatnjFLurq6fvjhh9OnT7+is2QeJBJEiCtWrLh//z5YpSoUij179ty4cYPL5e7evVsulwNF0Gq1eDwej8d/8MEH3d3da9eu7erqOnToECjUarXWaB04PyIiIiws7OmtBrCo37lz5/Hjx1etWsXhcMAKVCwWr1u3Dmy2mM1m9U/h7cjIyIoVKyIjIxMSEuLi4hISEiIjI5cvX65UKqenp0F3ZrM5JSXl6tWrrq6uO3bsMJvNBQUFH3/8MZvN9vHxGRoaMpvNKpXq8uXLK1euFAqFEolk+fLloE3QoKenJ5fLBZ+cZbPZrq6uly5dunz5soeHR3Nzs4+Pj1AolMvlzs7OAwMDRqNxYmJCr9dXVFSUl5dnZWV5enpmZmaWl5dXVFTo9fqJiQmdTqdQKK5fv3727FkXFxc2mw1uU6vVenl5qdXqmRtET58QkMvl69evl8lkVrPR0dHnO1atVut0OpVKRSKR5HL55OSkSqW6ePHiKzr5fw3MnURqtGNalbSL8HFYcDAWF/d1ZVPWx3ExEX/Ibh8a0Rv1qpGRsrIyG5gl8yORQqFw9erVTU1NPj4+g4ODQ0NDLi4uQ0NDBoMhOzs7MTFRKBSCrF9lZeWNGzfIZLJKpWppaVGpVGQy+caNGzdv3gQ5QfVPu7FJSUmZmZlZWVlJSUlP7N6CgK66ulogEGzcuLGjoyMuLg6NRgcEBCxatCggIACNRkdGRoKdE4PBwOFwvLy8srKyKioqysrKbt68mZWV5eXlxWazQdAnFArxeHxRUZFarfby8jp58uS+ffvodPqaNWuA7oPw0Gg0gjwgn88XiURvvvkmaLOioiI7O9vb2xs0aDAYmEzm2rVrDQaDyWTy8fFpamp655132tvbDxw4UFJSAjKzUVFRaDQ6Ojo6Pj4+NjbWzs4Oh8PFxcVFR0ej0eioqCiRSGQwGKanp2UyGYiOLRaLSCTat29fenr6zp07ZTIZyEvo9XqxWAwaDAsLQ6PReDy+s7MTBPVWHfyvjgX+LygoOHnypEKhsFgsCoXi7NmzYrH4VZz8vwbmMIrUaDUatbS7OutPQQjHmNSmPsLvd3xJID2SanVqtZpAIIBZYjab5XL5qztL5loi9Xq9QCCIjY0lk8ksFsvHx6enp2fnzp1lZWWjo6MWi0UikYAISKFQREREREZGRkVFRUREoNFoHA6HRqMjIiKioqIiIyPDw8Otm7Z0Ot3FxUWn0xkMBhcXFxB2zewXhIdsNnvdunU0Gq2qqqqsrCw9PX358uXp6ellZWVlZWUgN2IwGPh8vqura3BwcHR0NB6Pj4mJwWAwLi4uPB4PxLZyufzevXujo6NJSUm1tbVTU1N37tyhUqk+Pj7Nzc0bNmwAEmkwGFgs1tq1a/l8vkQi8fT0DAkJiY6Ojo6ODg0NXbZsmTWK5PF4Li4u/v7+7733noeHR0tLy8aNG1taWjw9PUHyQalUlpWVFRcXk0ik3NxcJBJ54cIFd3f3tLS0srKykpKSqqoq6/hBp0wm8/Hjxzwez93dXSgUlpSUxMTEyGQycAvDw8OVlZVpaWnOzs5Xr16tra2l0Wje3t4CgcC63/J8x4JGcnNz//73v584cSIjIyMjIyMnJ4dKpQKH/98nD2T2zO1CW6MdM1kmpdSaU3/aHBbx17xu2eRji2ZEmZOTA2ZJenp6enp6Tk5OX1+f+tWcJXMtkUBfampqwFbG0qVL33333dLSUrPZDE75KJXKxsZGkC+rrKysqqoik8m1tbUFBQUoFCo/P7+2tpZMJldVVVVWVgJRAH6urq7eunXrli1bqqurR0dHn3a+VTtA9vOZW73gdLdOp6uvr6dQKJmZmfb29rm5uWQyub6+XqvVghM/YrF4+/bt7733HgKBCAoKwuFwQPrXrVvX0tKyfv16BoPxhESCKDI/P7+mpqampqagoODNN98EUaRWq1WpVPX19RUVFWQyuampaXR0lEKhhIeH37lzZ3BwMDk5mc/ngzHr9fqDBw9SKJShoaHVq1cPDw+DpfSBAwd4PN7Y2BhYtq9Zs0YgECiVypiYGBKJBPKJRUVFeDxeIBCMjY2B9wzgAbC41mq1N2/ejI+PHxwcnJiYsObcf86x4KKjo+P48eOnTp1qa2vr6emhUqk6ne5VzML/SpjrXKRmzGgY0wuyUsIxa944WNQ7rDMadJqurq4TJ06cOnWqvb2dSqXSaDSdTvcq6qN6XhbaYNfVbDbz+fw33niDSCROTU2ZzWaBQLBz506gBRqNBpwE3LVrF9hvDQkJsbe3Dw4OxmKxWCw2MTFR/dMmjFqtBvsVVVVVVVVVYIX+dL8zwyuwpOVwOGvXrmWz2SaTCdgApUtOTmYymUeOHFEqlXV1dUlJSWNjY0ajEexTgzCKSCQ6OzuTyeSSkpLFixezWKzx8XEKhRIWFlZbWwuEe6ZESqVST0/PoKAgcLInKCho2bJlfD4f3IJerwfyFxMTExcXx2QyDxw4cPXq1d/97nddXV1eXl4MBgOkCzdv3mxvb69UKicmJshkMh6P7+vri4+PLy4uBvpuMpl4PN7atWs7OjoSEhJKSkpAEnN8fHxoaGjp0qV0Ot1oNAJLDoezZs0aLpdrsVjAm5anp2dbW9u+ffuA4D7fseAee3t7v/vuu+HhYbPZ/Oqe5fiVMKcSqdGOaZVDXQWf/ulcTUtLw4lDvkHHKwaVOqPZZKBSqWfPnrWBWTI/h370er1UKg0ICEChUMBp4+PjbDbbw8ODTqcDBwJ9cXNzKyoqKi4uXrJkSWZm5tKlS4uKikpKStzc3IDSWdsEZ/1AMPjMTkGDq1evBhXHx8c5HM7q1avZbPb4+DiwMRqNbDZ7xYoVjY2NK1as4HK5jx8/bmpq4nA48fHxYNuaz+cbjcapqan6+nosFhsaGlpXVweye0lJSRkZGcnJyda0JugRLLS9vLyIROLt27dv375dVFTk5eUFtEkkEmEwGH9//61bt5aXl5eXl4eGhpaXl4+Pj1dVVfn6+r7++uu9vb2hoaFbtmxJT09/66232tvbk5KSZDIZmUzGYDAkEmlychKc1hwcHMThcEQiMTIyEpSDQHVsbAzkc4eHhzUajU6nGx8fFwqF7u7uGzdu9Pf3Dw4OHhwcbGxs9PX1fe211zgcDnDv8x0LmuJyuSqV6hUNC35VzOl2jU4l67i6753VboGnW8TiumPr7BAo74Bj1SKl1mDQ63g8ng3MknmQSBCpRUZGlpeX19XVodFoPz8/Pz8/Hx+fJUuWgHyfWq0GmxhgLTkyMvL22293dnb6+voymcyoqKjFixeDRN4v7xcI1qpVq3g8nkKhCA4O9vHxsbe39/HxwWAwg4ODILCNjIykUCgajaa+vn7r1q3+/v5BQUE+Pj6urq69vb3e3t4cDkehUKDRaAwGU1lZWV5enpyc3N3dHRsbSyKRzGZzRUVFeHg4n8+3WCwsFmv9+vWdnZ3BwcEODg7vv/8+BoPBYDDvv/++g4PDli1bJBKJRqO5c+dOTU1NQ0ODVCrduXMniUQaHx/X6/UWi6W0tPSNN94YGBi4d+9eQ0MDiAR/+9vfkslksHyurq7GYDCBgYFSqVQikYSHh4PqNTU1YWFh/v7+vr6+7777rq+vr5+fX3R0tEwmk8lkGAzGz88vMDCQQqHcvXu3pqbm9u3bKpVqcnKytLR0xYoVM/dtno815P8fJwRkHpnL7RqNZnRkiN7S2PSghysdGRH2Nz9svt/Y0MtXqtQam5kl87PQHh4ebmpqMplMZrO5oaHhzp07d+7cuXv3bmtr68jIiPXYqVKpbG9vHxkZGRkZ6ejokMlkXV1dMpmsoaHh4cOHVstf3q+1QZVKde/evbt37zY3N9+9e/fevXtKpRKcbG1qagIHFY1GY2Njo3Vsjx49UigUnZ2doHp9ff29e/fGx8dNJtOPP/4okUiam5v1P9HU1ATOFSqVys7OTplM9sMPP4C+rA02Nzc3NDQolUqtVgvWuZOTk0qlEgxAp9OBhbPRaOzo6FAqlSCUU6lUDx8+bGhoALEhMAD3MjIyYq0+c/x1M7h37x4YP3B7Q0OD0WicnJycmJiwWCzgcKjRaOzs7FQqlTYwnyFPMMe5SI1WP26xWEx6rUajM5gtFovFYhyzqWk0b5+uMZvN4Ak0m4Ej/8PMx9JqptFoxsfHtVot+BdU+R8e4Of3C/YigIH12mpgNpvBAEB1a62ZY3tmIzPH/DRP3MXMET6zRKPRPFFxZslzxv9Ej9aXnnbj02OA2Awv/wOIrzrz/GVoEAhkPoESOVugREIgNgyUyNkCJRICsWGgRM4WKJEQiA0DJXK2QImEQGwYKJGzBUokBGLDQImcLVAiIRAb5t89SE5di843+wAAAABJRU5ErkJggg==" alt="" />

注意:返回的是小于或等于x,并且与x最接近的整数。

我们将在不同的数字上使用 floor() 方法,代码如下:

<script type="text/javascript">
  document.write(Math.floor(0.8)+ "<br>")
  document.write(Math.floor(6.3)+ "<br>")
  document.write(Math.floor(5)+ "<br>")
  document.write(Math.floor(3.5)+ "<br>")
  document.write(Math.floor(-5.1)+ "<br>")
  document.write(Math.floor(-5.9))
</script>

运行结果:

0
6
5
3
-6
-6

任务

补充右边编辑器在script标签内,使用floor()方法,计算3.3、-0.1、-9.9、8.9值。

floor()向下取整计算,它返回的是大于或等于的值

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>Math </title>

 <script type="text/javascript">

 document.write(Math.floor(3.3)+"<br>");

 document.write(Math.floor(-0.1)+"<br>");

 document.write(Math.floor(-9.9)+"<br>");

 document.write(Math.floor(8.9)+"<br>");

 </script>

 </head>

 <body>

 </body>

 </html>

Math

7-15 四舍五入round()

round() 方法可把一个数字四舍五入为最接近的整数。

语法:

Math.round(x)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAUEAAAA7CAIAAABqoq91AAAEN0lEQVR4nO2dzXmjMBBA5aJcS640kXtO7iBNUIxvtBGXsHvgM6vVz0h2RoMQ7x3ygRAI0DxGyE7iFrBlnue9TwGGwu19AqcDh0EXHLYGh0EXHLYGh0EXHLYGh0EXHLYGh0EXHLYGh0EXHLYGh0EXfYedc85VHdY59/Hx8epeR8fGYefc5+fn8v+NjW9yruQ83TEAyv1UEyXLM8JWh7flkwSNpcMuQ1DTL9lWz9MjR0ezk3IRk4sG8nA7KvNwcseTdMQwNOktOQ5ivb+/v2Xhv560OFtjWjtcfHTW7HWGjhgGNYflJBwHxFqy5uFtqxx2Y4ROP2PpZNfUmD9GRwxDw/dh4XEeh5TLvBX74TJG6Ng7vIhPycouG68jhkH/fXjxQiEoj6v5c1qxw8GwbYzQMXM4eEQWHXYRW50hO2IYNMfS/mvtVljz+F9SefgrQutU98XsffileWnB9lE7YhhazUAmwyXYFIROMQ+PQc9j6WSFZdCOGIaGny0F5XHNYFMuehTPsAeO6PAyYkcMQ8NPAnODt2BrTeWR6GdeejnTbR+Ytt/xkKstqSH08PFk4PB6D5Pz/LlbXbQduoVOsobfeQBdcNgaHAZdcNgaHAZdcNgaHAZdcNgaHAZdcNgaHAZdcNgaHAZdcNgaHAZd3AwAR8Y9wJZ5nvc+BRgKHLYGh0EXHLYGh0EXHLYGh0EXHLYGh0EXHLYGh0EXHLYGh0EXHLYGh0EXHLbG0mHnpP7N/e0Oea9fNrpVKLZbf2KXy+Xn5ydelmsOAw5bY5yHt7gv+mzTaE1Jfc3VyfincG7jaYzD1pg5vKU7f9XfKtOo0WT93KFU8vDlcpGv9OhK47A1xg7Hy37JJkZyVb3RoKasaFH4WM41Dwdythhdb38u/9UdW2DkcFfXvC8GDsceFp18W9o3Gs09JmKHa/LwKm2gq82AuZN4Ns3DnVzzvtg7HC9sq8k8nFQlV/5Go8WFerZ34EDjyhF17Ll/qCR+DHcSzyoO32/X9Z5M87p4vd2f2zq85n3Z0eHHu/m2RrOaRuVCf0EmmXV/P7NVTOPBWLKTeFbLw/Pk3DQ/HvM0/YvRPq95X1o7HCghpEEZ4ZhvNyofs3jwJIFvNQ7ntsoOx/87TjgrSzTH0vPkVo9Xur3mfbGc06rPusWalUerqZbL2JWPm61CMDzOjaVfmpeWx9J9hrGiw/fbNE1Xfxzd6TXvyy7z0vHqo813PGoajVcrE3VMMnM2/ZpHh/Gs5fD9dl3lfY6pn3R4zfti47AwHo5LcolRvVFhVXC7OJb2M2dxLM13PJJ4E1nztHbkxJeCM5jNaT3yo9C4mv/zPYcrG/XryOeTPJo/+pWno4WpaRyGX8HvPIAuOGwNDoMuOGwNDoMuOGwNDoMuOGwNDoMuOGwNDoMuOGwNDoMuOGwNDoMu/M80gGPj/gDAkfkLrXkm4/PguTIAAAAASUVORK5CYII=" alt="" />

注意:

1. 返回与 x 最接近的整数。

2. 对于 0.5,该方法将进行上舍入。(5.5 将舍入为 6)

3. 如果两个整数同等接近 x,则结果是接近 +∞的数字值 。(如 -5.5 将舍入为 -5; -5.52 将舍入为 -6),如下图:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAvEAAADECAIAAACZcumBAAANyklEQVR4nO3dT2yU553A8TGHVeFUjuSCzamnLd62SWxaYatNileRNmgvySWyLzS5mVtycjglN/uG9pBFVbVl1d0NUqRi7WqbYVM2eLcILIRSFhMmLAGXsmZKaBhsY//2YOIY4xjPzDt/nnc+H3GwhnfmfYRsv1+e5/1TCACA9BVaPQAAgAxoGgAgDzQNAJAHmgYAyANNAwDkgaYBAPJA0wAAeaBpAIA80DQAQB5oGgAgDzQNAJAHmgYAyANNAwDkgaYBAPJA0wAAeaBpAIA80DQAQB5oGgAgDzQNAJAHmgYAyANNAwDkgaYBiNnZ2cnJyeXl5VYPBKidpgGIw4cP9/b2Li0ttXogQO00DdDpZmdnd+zYUSgU3n//fVM1kC5NA3S6w4cPd3V1FQqFvXv3mqqBdGkaoKOtTtKsMFUD6dI0QEdbnaRZYaoG0qVpgM61bpLGVA0kTdMAnWvdJI2pGkiapgGIiBgaGvrwww+LxWKxWKxUKq0eDlA1TQMQETEyMmLJCZKmaQAiNA2kT9MARGgaSJ+mAYjQNJA+TQMQEXHw4EFNA0nTNAAREYODg5oGkqZpACI0DaRP0wBEaBpIn6YBiNA0kD5NAxChaSB9mgYgQtNA+jQNQISmgfRpGoAITQPp0zQAEZoG0qdpACI0DaRP0wBEaBpIn6YBiNA0kD5NAxChaSB9mgYgQtNA+jQNQISmgfRpGoAITQPp0zQAEZoG0qdpACI0DaRP0wBEaBpIn6YBiIjo7+9fWlpq9SiA2mkagIiIPXv2aBpImqYBiNA0kD5NAxChaSB9mgYgQtNA+jQNQISmgfRpGoAITQPp0zQAEZoG0qdpACI0DaRP0wBEaBpIn6YBiNA0kD5NAxChaSB9mgYgQtNA+jQNQISmgfRpGoAITQPp0zQAEZoG0qdpACI0DaRP0wBEaBpIn6YBiNA0kD5NAxChaSB9mgYgIuKZZ57RNJA0TQMQEbFt2zZNA0nTNAARmgbSp2kAIjQNpE/TAERoGkifpgGI0DSQPk0DEKFpIH2aBiBC00D6NA1AhKaB9GkagAhNA+nTNAARmgbSp2mgNSqlUrlYLBeLX/7+960eCxGaBtKnaaB5Fsvl0tjYueefP1UoTHV3Tw8MTA8M/Pd3vnOqUDi7d++V0dH52dlWj7FzaRpInaaBZlipmanu7tLY2N0zZ57c4N7589fHx6e6uy8ND1dKpaYPEE0DydM00HBzk5NTPT2lsbHFcnnzLZcqldljx6a6u28cPdqcsbFK00DqNA001vXx8QsHDizeuVPVuy6/8cbl11+P5eUGjYonaRpInaaBRlmqVD559dUro6O1vf3G0aPTAwPVxhA10zSQOk0DjXJhaOjW8eP1fEK5WDzX17d0/35WQ2ITmgZSp2mgIUpjY6Wxsfo/Z/bYsUvDwxahmkDTQOo0DWSvXCxODwxkFSKXRkZmjx3L5KPYhKaB1GkayFilVDrX1zd/82ZWH7hUqZzr67t37lxWH8iGduzYoWkgaZoGMnbx4MHbJ05k+5n3zp8/29trBaqh9uzZo2kgaZoGsnT7xImLL7/81PgYGRlZrjJQrhw+fH18vI6h8RSaBlKnaTrd8PBwq4dQo/Yc+dne3q0sEnV1dVXbNPOzs1M9Pa6BahxNA6nTNJ2uUEj1e6CGLGi0LU7SRK2DN1XTUJoGUpfq8YysaJoMPTlJ801Pbqpt8KZqGkrTQOpSPZ6RFU2TlbnJyQsHDqybpFl5buWTV2LXPHjXdTeOpoHUpXo8IyuaJisb1kZpbOxUoXCqUFhXNjUPvlwsTg8OugCqETQNpC7V4xlZ0TSZWKpUTu/c+eSq0GrTrCubegb/8a5dGd78hlWaBlKX6vGMrKTbNBNdXWtzIaE/U93duwqFmpvm6ltvXXvnHVM1mdM0kLpUj2dkJd2maat5mgtDQ3OTk0++vm6e5lShcGl4uFIq1TN4999rEE0DqUv1eEZWNE0mPtq+fcPLkdY2zUrNrLxe5+AtPzWCpoHUpXo8Iyuapn6bTJysNM3amllR5+Ab8fgFNA2kLtXjGVnRNPWbPXbs0vDwhk1TLhY3vEVNnYO/9u67V9980/JTtjQN7e+zzz5rk9977SnV4xlZ0TT1uzI6Wu3tfesc/Ib3wqFOmob2d+TIkT179rz33nu+VzeU6vGMrGia+k0PDpaLxare0tPTU8/gF8vl0zt3appsaRra35EjR7Zt21YoFHbv3t3ksnn45y/X/c7586WZyrXr0U4/Ne11PCt8ZZNXyFa6/7Z1ZkGGTu/cuXjnTpN3OtXTU7l6tck7zTdNQ/tbbZoVmZRN+czvtvIfpH/5wY9/8+yLv9q7f+HuFyuvHP3uvl/85Q8/eu5A+zywpY2OZ+tSZsNXGrdrqM1fFAr/Wih0NX2/44XC3qbvFGhDu3fvnpmZqe3/eMsPH/7b9/92eXFx881+/lf7KzdmlxcWHtz8w3/+8KXFu18c/97g0sKjdx3//uD87bka9p65dmmawhPJspVXoOUqpdJUT0/zl4G+6Y441Mw8De1v3TxNoVB47bXXPv3005onrRfvfvHbvr/ZvGn+vvdH9z/733j46Kfj7u+mf/P8gQef34yv9jl/648fPPvCauK0ULtUgqYhUa26A56HWWZO09D+1jZNvTXzpy8W5sr3r17bvGmWFxZ//dyLlc9vxtKjHT388v7aSZoVJ579yfzt/6ttJBlqUiXMTPQ/Ssr+iZlvGkrr1p6gZuVicXpgQNPkgKah/a00TZ01s+Lsiy/9x3M/PfXcT/+r76/P9A2d6Rv698FXHtz4w5NbLsyVf967f2V1af723AfPvlD5/OYHz77w8H5lZYPT+15a/NPddrhqob1CYXUybZNXoK3cOn78k1deaf4Pc+ntt0tjY+3wSyQ3BgcH2+Ssc/gmp06dunr1arbfqL/te/nBzVtP3ewfvzf4T737/+G7P7r3yf/E8vKDG7Pv/+DH/9y7/1d79z/80jnCkAub3HCvoTRN5jQNnWmLTbO8sLi8sPD175zl5YW58sJceeFOubHjq4amgbpomtzQNHSm4nMH5//Y+lNhMqFpoC7WnnJD09CZro3/3eqZManTNFAX5wjnhqaB1GkaqItruXND00DqNA3UpVX33JseHCx/+GGTd5pvmgZSp2mgLkuVykfbt2uaHNA0kDpNA/XyDMt80DSQOk0D9ZoeHCwXi83c42K5fHrnThc9ZUvTQOo0DdTryujo9fHxZu5xbnLywoEDmiZbmgZSp2mgXs2/RY2b0zSCpoHUaRqoV/Mv57548ODtEyeatrsOoWkgdZqmc339sPTCoZOtHkzqPtq+fen+1p/iNjOxr6tr9QGt/eOXqzySfrxr1/zNm1WOkafQNJA6TdOhZib6C/0TM60eRm5cGBqam5zc8uYzE/u6Dp2s8fjZqrv85Z6mgdRpms508lCSRbNmaqlQKPRPXN5gg65NN2iUKk+pqatprr711rV33tE0mdM0kDpN05Eeb4N0lp5mJvo3H+zMRH/XoZMtOCwtVSqnd+7c8vLTY2tPh35d3YHUwlODaBpInabpSI+tPJ08lEzVtG/TRM0PYDr5s66uKqqmXCxODw6apGkETQOp0zQ59/WMzNq1psfbIJ2FqMfmlzZql8fWnpocNxveM2ZmYl/X6kLYxsOpLmo8urJxNA2kTtN0pMfPEE6nadY4eahr82h56gYNcLa39965c1W+qYqmmZ+dnerpqeYCK6qgaSB1mqYzrYmatrwCauPppce0Y9TcPnHi4ssvP31haGbiZxMzy4++3Nf1jVM46105fLjJNyzuKCMjI5oGkqZpOlXyd6dpx6aJrU7VrD1HeKvrTiZpGk3TQOo0DemYmTj01azNzER/16NLtR/7cqMNmmqrUzXVM0nTaJoGUqdpSMjac4RXp2DW1svac4Rbdf1TQx5c4D57TaBpIHWaBjJWKZXO9fVleAuZpUrlXF9f9WcfUx1NA6nTNJC9crE4PTCQ1bSK67ebQ9NA6jQNNMT18fEro6OZfY5jbeNpGkidpoFGuXjw4I2jR+v5hJUzjl3r1ByaBlKnaaCBLr/xxuXXX1+qVGp477V33xU0zaRpIHWaBhrrxtGj0wMDi3fubP0tS5XKJ6++evXNNy05NZOmgdRpGmi4u2fOfLxr15XR0fnZ2c23XCyXr4+PT3V33/rlL5szNlZpGkidpoFmWKpUVmLlyuhouVhcLJfX/W25WCyNja1s8NT0oRE0DaRO00DzrJTN9MDA6W9/+6NvfWt6YGDt16WxsXWtQzNpGkidpoHWWJmbeXLOhlbRNJA6TQMQoWkgfZoGIELTQPo0DUCEpoH0aRqACE0D6dM0ABGaBtKnaQAiNA2kT9MARES8/fbbmgaSpmkAIjQNpE/TAERoGkifpgGI0DSQPk0DEKFpIH2aBiBC00D6NA1AhKaB9GkagAhNA+nTNAARmgbSp2kAIjQNpE/TAERoGkifpgGI0DSQPk0DEKFpIH2aBiBC00D6NA1AhKaB9GkagAhNA+nTNAARmgbSp2kAIjQNpE/TAERoGkifpgGI0DSQPk0DEBFx/vz5Vg8BqIumAQDyQNMAAHmgaQCAPNA0AEAeaBoAIA80DQCQB5oGAMgDTQMA5IGmAQDyQNMAAHmgaQCAPNA0AEAeaBoAIA80DQCQB5oGAMgDTQMA5IGmAQDyQNMAAHmgaQCAPPh/NzI8R3iP55UAAAAASUVORK5CYII=" alt="" />

把不同的数舍入为最接近的整数,代码如下:

<script type="text/javascript">
  document.write(Math.round(1.6)+ "<br>");
  document.write(Math.round(2.5)+ "<br>");
  document.write(Math.round(0.49)+ "<br>");
  document.write(Math.round(-6.4)+ "<br>");
  document.write(Math.round(-6.6));
</script>

运行结果:

2
3
0
-6
-7

任务

补充右边编辑器代码,在script标签内,使用round()方法,计算3.3、-0.1、-9.9、8.9值。

对数值进行四舍五入,对于 0.5,该方法将进行上舍入

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>Math </title>

 <script type="text/javascript">

   document.write(Math.round(3.3)+ "<br>");

   document.write(Math.round(-0.1)+ "<br>");

   document.write(Math.round(-9.9)+ "<br>");

   document.write(Math.round(8.9));

 </script>

 </head>

 <body>

 </body>

 </html>

Math

7-16 随机数 random()

random() 方法可返回介于 0 ~ 1(大于或等于 0 但小于 1 )之间的一个随机数。

语法:

Math.random();

注意:返回一个大于或等于 0 但小于 1 的符号为正的数字值。

我们取得介于 0 到 1 之间的一个随机数,代码如下:

<script type="text/javascript">
  document.write(Math.random());
</script>

运行结果:

0.190305486195328  

注意:因为是随机数,所以每次运行结果不一样,但是0 ~ 1的数值。

获得0 ~ 10之间的随机数,代码如下:

<script type="text/javascript">
  document.write((Math.random())*10);
</script>

运行结果:

8.72153625893887

任务

补充右边编辑器代码,在script标签内,使用random ()方法和round(),计算不大于10的整数。

使用random()随机取得0-10之间的数值。使用round()对数值进行四舍五入。

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>Math </title>

 <script type="text/javascript">

  document.write(Math.random()*10);

 </script>

 </head>

 <body>

 </body>

 </html>

Math

7-17 Array 数组对象

数组对象是一个对象的集合,里边的对象可以是不同类型的。数组的每一个成员对象都有一个“下标”,用来表示它在数组中的位置,是从零开始的

数组定义的方法:

1. 定义了一个空数组:

var  数组名= new Array();

2. 定义时指定有n个空元素的数组:

var 数组名 =new Array(n);

3.定义数组的时候,直接初始化数据:

var  数组名 = [<元素1>, <元素2>, <元素3>...];

我们定义myArray数组,并赋值,代码如下:

var myArray = [2, 8, 6]; 

说明:定义了一个数组 myArray,里边的元素是:myArray[0] = 2; myArray[1] = 8; myArray[2] = 6。

数组元素使用:

数组名[下标] = 值;

注意: 数组的下标用方括号括起来,从0开始。

数组属性:

length 用法:<数组对象>.length;返回:数组的长度,即数组里有多少个元素。它等于数组里最后一个元素的下标加一。

数组方法:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgcAAAJXCAIAAACITWCbAAAgAElEQVR4nO2c3ZXjvHJF2ZOT8mEIDkF60bKfruOQU7lLmXzNDGw/SKJA1A+LLEqiMHs/9JBgoQDWTJ9DgNJ0/wcAAPCg+/QEAABgR+AKAADwpPtPAACA//zP//3f/727wr9hOdQNAFriv/7rv3CFFNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFri5gqn0wlXWAl1A4CWYK2QhboBQEvgClmoGwC0xIddoeu6ruuCV/3gT2HVreu6//iP//j3dNqzd9QVvGzKAAAmn18rxI1hn1rpu0JnUIapp/u8WQBong+4giWUs4/J+xTKzFpB7bXDewSAv4dPrhWCCrjIOd6PrNuKee78HgHg72G/riCv7lMoV+8gqeq/z3sEgL+Hz7uC84D8FYoZcYV/2y8MylNWCQDwcT7vCpGWWf/4II4ryJXBv+deL+/t7gDgb2PvrhC5dON4PB6Pxy3nF8N5rxD/DNKsefz7czcIAH8VH3MFVeUdn3DkcmQnrnCjW76DJE8rcAUAeDW7doWgko5a2aorfPYGAeCv4jOuYD0Rl+2VjKq8bcIOmW+x7e1eAAA+9i022bJIHPejpGrdbtMr1wrVpX9rFrhP2wOAv4rP/48X3w51A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWmLgCAADA3RUul8sAy6FuANAS//M//4MrpKBuANASuEIW6gYALYErZKFuANASuEIW6gYALYErZKFuANASuEIW6gYALYErZKFuANASuEIW6gYALYErZKFuANASuEIW6gYALYErZKFuANASuEIW6gYALYErZKFuANASuEIW6gYALYErZKFuANASN1c4nU64wkqoGwC0BGuFLNQNAFoCV8hC3QCgJXCFLLJuXdfNtsh2K2YRwSS3sMyIft/q6urb36QmwzD8/Pz8/v46LTLg1th1Xdd18lJ8LDUzwJ7BFbKodVshi+qpz2xCizGsPFg0lnM1YoqlLTkWZU0vco8VpTpbHvD7+zs6gTSD8pLESq4a0mwSgA/yza5wPR+6/lKcHc7Xxx/vw6nbrMKOgujEDOElhSWvjpbJsWZH8eejZl53X9ZVf25JnEf7yKXywBJ9y59YVcBOaMUVCjN4sy/M1s2S3VIo1+nj0pj4lFZblLyqtsj8VkEi9fFZ9GweVHPZ67bO8HV/xXwA3s8rXeF6Ptz/tReCfW8p1bzv61a/7y3s0hdnl77oW529GL9ulbpZVwdD/nycUToh5WUvNWz2uOoeSSKnoV5VD6oA9cbjOEpdvj9w3kCo64Dykvoewn+lwVoBdsjrXOHSjyp/6bvD+Vq0XM+Hu9pfz4c6TO37XBdM+97aaht4py2ob5stOVNV0lJ8X3bLvvKqnEbVy4q3JiPvUWbwp+pPvpqYM8rmrlA2Vk/9g+EK1sFgbyKVAVad1VUFVgFv5mWuIPdxJi0PB6h2gW7H/h5QGWbEv3MTKfK2WW0ZXE0fYq4QGUX28iXYOR6ElEsnU+1EHVc2RuZQzSconYtcQZ4Oy+0hwqJ3FQDv4WWu8HzwV1seuq26guz7SPBg6goifv+u4Chp2T77c3bcajjfFSzKAHWsSuitY0fcpWFEzGaYcwX/g0Od+OyQv9EU3EHqHptRcqCl85HTqDgej8fj0boKsIJvWStc+vENw/K1wkt/cxxXsH7zq7DquIupcLfEFZxIeTCbZxy9c7VeJlHLUl3yZ6vGRJ6mN1wr+MmDI1obVlVMF1gG4QqwLW95r3CXb+u9gnAF2bcIu/RdvVYIvFf4iCv4LYNhAEGZXuEKqpr7zuQjzSk45/g9+sYzLLcEq0spwf7GkZ9/zBNcdqzeJhr/SeMKsC3v+QxSKfGTBsMVlL7FR45Gzb8FeZ9BesNvziauMJ4uemCPN6quI0dUW6zR/bHUAGfoSv2dUgQdqyTyzTLnmX2M6WzGLSPrrXK5g2R9Bqnj3TLsgG/+vkLJnr6vMAqcxRhWRcp2a1BHlP3ZWkqtzqGas7wFP39neEB17PSyJjN7myWL/ruLzPcVnEZnjwgbgL3Riivs8rvNAABfRzuu8CmoGwC0BK6QhboBQEvgClmoGwC0BK6QhboBQEvgClmoGwC0BK6QhboBQEvgClmoGwC0xMQVAAAAWCukoG4A0BLsIGWhbgDQErhCFuoGAC2BK2ShbgDQErhCFuoGAC2BK2ShbgDQErhCFuoGAC2BK2ShbgDQErhCFuoGAC2BK2ShbgDQErhCFuoGAC2BK2ShbgDQErhCFuoGAC2BK2ShbgDQErhCFuoGAC2BK2ShbgDQEjdXOJ1OuMJKqBsAtARrhSzUDQBaAlfIQt0AoCVwhSxq3bquC3YvI9VekVRVjNNFRsrg+OSXTsxpt+59w8kMw/Dz8/P7+7suoLqUSbU56lhj48/PTzclciPW/c7Wwb/xP3/+/PPPP9ap2i673O7in3/+GY9LbsGRgdRRZiMjt7ZuzjsBV8jiu4L86y8vqT+DqWSA31IN7QiubyoWswH+tP1BrUtLiSi1o5LjXfz+/lZSa+lvFRCfp5/HCajCxnEtWbduedYVbnOIOMqI1NZ1rnDTVl9JS/GVWuyYgTNJK8lWc94J73eFS98dzlfj4vV86Hp/Htfz4XC+Pv74PLOuYB3IUyl/1tXOtQq1xUqr5pEYdz9DvKMfuXoCJTepUjVxVmErTYw8OFvHryCY39Hx2Zxy5VFd9Wto6XKl3bdsvnlUCmulLQ/8dYBM4k9GJT/n/fBta4XCDHbiC7JupZJ2hivIX5tBqLnsUg5RHcTD5GnwUhBHGtQA2fiKWTka7UvqIkF/pyvE1yVqpLo4UMPkIklWL7Jr5Kjk4D5oq1dVoc88jPsJI0uT98/5RXx0rXA9H+7/2B7rg3GtcD0fDn1fXx4ufbmUmJ59iMxaoZJFeRARUzWblarTPKnKIFlWEW0Cfrt6O9XVzDTU3Y91Mu07ylY7SMlZlZNRVzb+g791a6XJrbi1Sgq76TNy5HG+fNCuUo34O1RyDp2xvJBJ4u8wknP+OB90hUv/kPvr+XBvK11hNIOnj9Q2sAdbWO0KpUBXLX6qeKMzqNrdEeXB9oyRYIw6bfXenbIEqfZMpLRZSndjdv89/nban5i85CDfalgzHx/k/VtTzXLpisqfj7UyULd6LP0tr+Z3dfyZlAFyOHUdsMmcrRHfyedcYbIBVDQ+XUFdQEz2jPawiWS5Qmer5GDIdCfkb/ZYZpZpreHUdmvC1d2px/EYmVzeu3UvahKV2edfB+v1gyOyQaUewkuWyB6UH2O9BYm8DlGXQeptBuvsv++N7MDIeP/5vQt85ke9OsZE5rbhnAd3yfI2PucKk7fOD3n3XUG8qN6nK9z+msdjp291tROSPTIYBtC5tuGkcibgT9IZtGyUU1UzdHOuMDvWIuJvZX15VSNnN5c2d4XZnZylawV1btUu0+r7iijm0vjITytn1RL5DJLTkp+zNR+V0+l0PB5ftC3Z1FrheDwej8e33MWT4A6SDLAk3uni53ck1RpCuoJKZCbBCQcntnSsIBFtdQRUesM6VxiKR+/gbINbVf6r4MhaYXb+zlrBiom8YnVeAKh9rfe38XfaVUveFTaZ8xDeQTqdTs25wvx7BeEKgfcK+3cFSxCdeKmYq10h2O40RvR91l2Wzt+fYZzIWiGiv9ZGfNBdVkzVeYR3BlJdQRqS9c589t2DrMCKtYLaMvuWuHobMdpP5O2FHHfR3NSWreY8y2gGTbrC3GeQFFcwP4M0msEXucIgXvBW6m8pqYyRsutMwxFiVXODwu2LvjVQdeCP5bdH2MoV1JZFa4Wlc/BfCC9aBKhjzUbOrhXKPIveK4xXg7oc1/2g98yK8jqfWDfnPbCzb7HN8j3fV6hOK+0uYyKCKJP4vWR+NfOsK1h51LlVYbIOVoAM86V/tTEEP0gT3KuJB28ySWt//8f4nJXzUmHMM7vWkUP4m1RWHud5/I/41KZ8FezvzAzTB/BgKvVqNed1U8rMeQ+81RXua4Pch0m/4rvNAABfyrd9t3l/UDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaImJKwAAALBWSEHdAKAl2EHKQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVurnA6nXCFlVA3AGgJ1gpZqBsAtASukIW6AUBL4ApZltat67pFl2Rj1WL1urFoblW24HxmY/wZlsymXXdTIz8/P7+/v6u7b54HYIfgCllk3UrxkkI22y6HCCq1I6+qBFfB5QQik7EEfdbG4mGLPCOCpeY/Pz9WcW7xTkAZBtAA3+cK1/PhcL4+/vg8qiss+jkEdD+C0zF+Ka7v6rHlN6p5SOLTXsHNEjZ5zGetAA3zba5QmMFOfCHvCo4aOg+nciZO2KwrqB3lqbxBOWG1DtZV9a6dltWUOr5O02fXEwBt8GZXuPRdfz4fbr9L/Tjg9dH0bNMjL33Rqzr7EKtdoZJIR/EdMVVVWwZ3ms2oydUucixrzla2qjI+VlmcEvmMNiAP1sFaARrm/a7w0Pjr+XA/uvRl2/3534qc2MAebMF5r6BqWae5wthRHaKzXaFs7IQ3+BKvHkiJV5V9dqClo6ssVX/J7QFfXSWMlyLvDHivAH8P73eF567PXdMnO0FjwGzkMOxjE2mTHSTVP6qE8lgdUZ7KS06wNUl/JmV39S7kKGVM5MbVu16q1P4zfmSXKb8TBbBzduAKk7ZR52cjJ9EfZJO3zWXH8tRHHdFKJXPKSLVXRMpns8lU6oE1AefeF5F0hWrFYKU6Ho/H43HdDAE+zgdd4bExNL9WUCPvF8qGj/w2bvgZJFUZB1e4ZXc1jyOjsxJv9VXz+4POmpNvS5Hb8cmvFYJhuAJ8L629V9izK1RXZx+c5bE8HRv9vrOuEBy9HCvpCv7M/cm/whWqS+oLarlkqRYN4z8/XAG+lw+sFfr+9smi4ilf/wySEml9BumDv42rXaE8rY4XuYL/RD/GOFRhzlStiVUxMnOVUMb4TuPMeRGRtwVVi7oy2OqzTAA75JPvFdZEfsP3FQbxCCyPVcW0ZNRpkZruaK5KqdRViz8NdSzHNtQ5WL1mR7dux8d6W+B/4VldNPDOGVrl21zhG77bDADwvXzbd5v3B3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoiYkrAAAAsFZIQd0AoCXYQcpC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJW6ucDqdcIWVUDcAaAnWClmoGwC0BK6QhboBQEvgCln8unVd53cvA9Tg2Qwyxu9iXe1cZoOXznkRwYQ/Pz+/v7+3n+sGyvTdNpXsXrWo+X9+fm5/HUuHtrKNjZHRnXaVP3/+/PPPP4vmCW8AV8ji1C2izvKnlcRSYVWyZ8ddNFtreitSrWORK1QHvttJ5bWuOqnWjRW/ncFV7XJc/3Yi0y4TOqMHXeGWapT+P3/+OPPBIXbC7l3hej50vTqz6/lwOF8ff3wMWTdfGjr7sbpzZVc9VjNXLcH5BGOs6Tnt1r0H6WxP8vEffiWzKryIDZcdqwfa5JLqlJYVVX5cDTEuDspVAiuGvfG1rlCYwWd9QXUFJ95S6kFT86qLHEI2qmGR6cUl23EOq3HpEOqsZrv7myq+bWxiCcGxts2jBldrJnUIGaNuwfkBloWo47JW+Are4wqXvuvP58Pt7/6u8aXcF8fXR9hd6K/nQ9f3fTfpe8t4meT/lKetc4XxuBOK2YmH9+pU7VVlc2ZiTU+2V2NZ8WrH8sCJ9HGKc6N6YnWUzjken2orydv8xUAmgyO+zvaOupM2awZWVYeiVtZt+nfNWuEreJsrPBR9NADVFfSDR9ylf3hFbQMftAXHFXwd74qH66rFyra00ZqJnFU1H9UM1LH809WuoM5NXqrkz3IF696dLSZ/F0VN9cH3Ctbz++yBnLPvjvE8FZUZVIsG6Qq3ANziI7zNFZ57PHcF19cKl76b6rtlHtM9ow9uIvmuYDWqp51whdnj6nevCug0Za8i1fxWpDr5FTfrMzu3EdUVZjdA5PEwfQr23znPbjRF1LwLmMQiV5Cnsj7qgTWW9cY+uN2kTji4LFCXFPA29uYK93VF14m1RXk8yXe/8l2uII8HTUNLoVSl09dlJ79qGHJQHyvGd4UVOK5QqpWlU5b9qO9FfS0OKr7qKFWMs+NvTbjKGdnln91BkhOOrBXU0YeYK6hvF0r1D7rC6XQ6Ho/JbTqQvN8VHtJuucKzi7vR5LrC8Xg8Ho8vu53pRNeuFaT+doZez2aTx5EuneYZ5Wk1PTWnOmfrjqxbmyXe0X8o9ne9rRcMan4/W/AxP3gvfpLIWsFPro4VLGBwZXbDknup/sEdpNPphCtszufeK0zfEnSVU/ivHwLvFXbiCpb0qweDoexSeRe5QqXsqqzL2apCrMq9I/3vcQVVzf2NFB/rWX72uTj4DmOpJVhdql2vRffrbL7lXcGagPqSecU20WgGuMIreN9aoe9vHy56PtNfn59KGlV9bJv5qJL1GaTRDPbgCiqWKA+ahjpqXsZYOu4ru98eEfe4KzhOE8G6kVJwK/GSQqwKfYUT5ghicCt/EbOu4CxoqttxjCry4sHfE1P362SLtUToeKW8Pz7wXmEbvvD7CqUylhJZqaqaQf2tdno5Ehy3Cl/NfR+SN2iNEmG2oyOalXOoymhJnpN/bK/yz76riLB0o0ZVfH9c1URnFxy+9fojyg8gqafwcb7WFXb83WYAgO9l999t3j3UDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaYuIKAAAArBVSUDcAaAl2kLJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoiZsrnE4nXGEl1A0AWoK1QhbqBgAtgStkoW4A0BK4Qhanbl3X+X2tgKq9PFW7zA60OnhdHmf+amQ3ZelwALAhuEIWtW6Vxlmq57SXB/KnHM5PqAY7c1bzOAFVmD+ieqdq2OxYALA5rbnC9Xw4nK+PP95BfK1gnUplDMqof3WpKyzF8iffTgbD5Ga9BADeQ1uuUJjB23whslYYbNWrAqqfUmRVhZXZ5PEmD92zeeQErBbnTqvg5JwBYBFbu8L1fDj0/aHruv4yDMNw6e+/yLfT4dI/jiYndViV53o+3C4XQi+6VMmrs5dhuUJ5IEWtOihPB03Q1bRl9+q0Us/I8VLUvtbMy6vWT3lrwUEBYENe4AoTaX/o+KW/HxVa/TjUwso81/PhGXhr07oIG3iPLQTfK5SX1ANVJSsLkQFWzqXH3RzxmBV36tx7efuWJfz8/HRd9/v7q14FgEW8whVKUxhlWdpCaQoirG6c6rvVZbpn9J5NpOBaYXBVr+poeYO8tOFx5OpsjPQJ/xYi9fEn8/Pzc/OD8QAAMrzaFUqmj/SjO6hhE90X20Vql+ei4TmXD7qCfIK2tN6KLMOq0+o5uuxuibKFnLk1tJoq2N2qg1+fyLSDrnA8Ho/Ho3UVAEbetlYouPRdf3lu76hhel91eVF0cV3hRbrw0rWC1EFpG+q4K44jVzdJHneF4MSCO0i4AkCEV7pCufsvdoQ6P6yIn75NEO8Vno3z7xXe4wrWg60lc/L5N+IccsTZML/dn6F1a849xl3BH92aTJDxLx1XAIjwUlcYiq2fyWO8eFEgwoS73NA2lZ6Zrc8gvVQXImuFwRbByg+qXjJAPlBbwrrUFZxpLHIsaRXW5GWSuEkAwIvg+wpZ1LVCdeqrquwuDWNWNAehyKouW+P6k1GdYPamHG+rYhzb87sDwOa05Qo7+24zAMDX0ZorvB/qBgAtgStkoW4A0BK4QhbqBgAtgStkoW4A0BK4QhbqBgAtgStkoW4A0BK4QhbqBgAtMXEFAAAA1gopqBsAtAQ7SFmoGwC0BK6QhboBQEvgClmoGwC0BK6QhboBQEvgClmoGwC0BK6QhboBQEvgClmoGwC0BK6QhboBQEvgClmoGwC0BK6QhboBQEvgClmoGwC0BK6QhboBQEvgClmoGwC0BK6QhboBQEvgClmoGwC0xM0VTqcTrrAS6gYALcFaIQt1A4CWwBWyUDcAaAlcIcvSunVdt+iSbKxarF43Fs2tyhacz2zMultYys/Pz+/v737yAHwpuEIWWbdSkaU6z7bLIYJK3RVYU1KRE4hMRk2i9vLn46RahKXmPz8/1o3f4p2AMgzgL+GjrnA9H7q+HvXZeD0fuq7rDudrFXk9H+6Nh/P1rTNWUF1h0c8hoPsRnI7xS3F9V48tv6k8oOylFmEpN0vY5DGftQL85ezPFdSr1fHDDPbgC3lXcMTXeYCVM3HCZl1B7RhUc3lpNmxbSh1fp+mz6wmAv4e3usL94f/2+H8/7/v+/ut3V/27AVwezYfz9VKGXPrSSaZnn2C1K1Ry6Si+I6yqasvgTrMZNbnaRY5lzdnK5kzDv/dZRhuQB+tgrQB/OW90hfF5f3LwEPVLf/cKGTY5rm3g47bgvFdQJU91hbGjOoTjCmWj9AZf4tUDKfGOsi9tdCbvBFjcpqquEm7P/rc9JeevIx4TnxXAt/POtcKl76YKruq+7wpiz+jjm0ib7CCp/lEllMfqiPJUXnKCrUn6Mym7q3chR7GYDZD1ueE/40d2mfI7UQAN8N73CpOtoFWuMC4pHjTgClXH8jSojL58D4Ycy0i1l9XXUnM1m0xlDbqapCtUKwYr1fF4PB6Pm0wYYJ985G3zY9fnBWuF9//SbvgZJNUqhoCGOtmcXlWwJfFWXzW/P6hqMI7bLSK/VgiG4QrQNu9zheknTte6QuC9wm5doboqlTT+/C5H9PvOukJw9HKsjCuUp5EbjBDU+sF4QW1Z1Nhx/HeFK0DbvHOtMH4Eqfq40fRYdYV7X+8zSJ/6pV3tCuVpdbzIFfwn+jEm8mwuT6tZWROrYmTm4M3O3ohD5G1B1aKuDLb6LBPAl/KF323e/fcVBvHwLo+dZ/Cq0W+Rmq7qsiO143yqYMeZnLEc25h1F7UCcay3Bf4XntVFA++c4W/mC11h999tBgD4Xr7SFXYFdQOAlsAVslA3AGgJXCELdQOAlsAVslA3AGgJXCELdQOAlsAVslA3AGiJiSsAAACwVkhB3QCgJdhBykLdAKAlcIUs1A0AWgJXyELdAKAlcIUs1A0AWgJXyELdAKAlcIUs1A0AWgJXyELdAKAlcIUs1A0AWgJXyELdAKAlcIUs1A0AWgJXyELdAKAlcIUs1A0AWgJXyELdAKAlcIUs1A0AWgJXyELdAKAlbq5wOp1whZVQNwBoCdYKWagbALQErpCFugFAS+AKWZy6dV2nHjuNatjspTh+kuqqFbziviIB3QO/b8nPz8/v76/fErkkr/rB6+YG8BXgClnWuUI3h58tmCqeRL1ktcifVkdnPmN3a7bB+ozieztYJP1Ou9piTWacgD9nTAK+gs+5wvV86PpLebCw9+F8ffzxSd6zVnAkeHZ0X6qkOqsd4/dlXQ1WYPWlSpTjSj3bcZ2as1aAL2UHrrCu78MMPu4LSVdQNXppntnRZ/vKIdQWOVV56ieR41oVCM72RrVikO0qcnlhtVgZZELHfoJJAD7L+1zhej7cfj3uIq6uFcagbpT6S39veVrIpS/9ZHr2dl69VpAqWcVY6inDghJctvtX1YMqQB1rPA3erzpbVXBXPKFXHpBPmOwI8Fne5QrSAxRXuPSj9l/67r5D9PCHe8sgbeCztmDVrdOenWWMJdODUOdZaVYnoKaSMepA1oEq0PG0suOi0av48eleVtJqlzFyZSBfV0TyzMbIvwKAvfG2tUKh+DdUe6g2gya7TA9bEGGf3USKuIIqnTLYx4pxZKiaiR8jG635+7cWOfZzVvHOwSCe9P0Xzuol9b2ClS2yubR6AwpgD7zxvUK1FSRd4bkaePDcULpxOF+VsG90BUfKK12uEsbbI2GqzlquoOaR4l7egnNTwcwy57DcFay3DlYGJ9us4lseU3E8Ho/Ho3oJ4LO8/23zY79n8VqhaHRd4c2/b8m1wmxAFRlvl2GO/TjqXE7P6hiZ26ydzE5DveTs+aj7QlKyfaFfsVYIhuEKsE/e5ApPeQ++V7g3Fu8VJmEz7xU+7gr+o7c8VdXZyRlp94d2xrVcYVF8ZCngZ1vkClK7O7EXNCxcK8xeVQ3Jct+x4/iPE1eAffK2tcJzM2iq+9ZnkMamcePpuR6wPoP0kd+3da5QaqKM8RU82O5Mw5pPtQ6ITE8+8kccUXqGOjeHW0z8m2tOpL/n4ziKeslauzh3CrArvvO7zfv+voKvxYsUPxgzq57WTDrtwdzyABkfyS/nI/Orc/bv9/az+kRphdxHisSon1J1XiyXXlItGnjnDN/Id7rCl3y3GQDg6/hWV9gP1A0AWgJXyELdAKAlcIUs1A0AWgJXyELdABEgIa0AABx6SURBVKAlcIUs1A0AWgJXyELdAKAlcIUs1A0AWmLiCgAAAKwVUlA3AGgJdpCyUDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaAlcIQt1A4CWwBWyUDcAaImbK5xOJ1xhJdQNAFqCtUIW6gYALYErZKFuANASuEKWRXXrus5pkVetRj8m0mVRQrV9PF43bZnK75K/KQCIgCtkWe0KpRQ6sliKb4ma02mxmA2whnNcYXbOTikic8YhAF7HN7jC9Xzo+ktxdjhfH398Hlm3oBTKlvhVX3bz6jnbMWIbkSHK7vIu1k0eADJ8mysUZrATX/DrVumdVECrcRAP45YryLFkWAQ5Jd9anDn4Q8vMcuaDUTpnPgCwCR9whev5cPvdfmr62DRR/74/lFLQX4bh0herhursQ0RcwTmVMloeVAGWnsps6nBx1I7W0DI4IujyODJ5LAHg1bzdFcYH/+cK4NI/3OB6Pty94no+jBYxiZzYwB5sQd1BUo/VS8FHZiut3+ioc6XUkRh/lDLA8gnZos5B5lcrAwCv4P1rhacH3JnsBF36my1Uu0ajkUz3jPawiaTWrVKx2QP5swqzjn3ttgxGXorHzLqL2lFtUYtgdcESAN7DJ94rXPq7iowLgMleku0Kk8gy+pNEXEFtsU5VxR8MA/BtY6krWB6jJlHnEGmJe5jvQCPH4/F4PKqzBYClfPBt82P7Z7u1wkfUwapbXPH9R2Y14awrOHOwgoNheVcoW1TbWzF5XAFgK97tCk+1n3+vIFwh8F5hJ65g6fs6ZZfZVriCJbKWUVkP5s5kVreo5Zqd8FD8deMKAFvx/rWC/LyR8Rmk5/XbZe8zSB9UB8cVhoDSOeKoXpX5Lfl2pmFdml0HWG5nJQ+2LHIFAHgp3/B9hZJv+L6CL9/laRkTWTFID3Bsw7EEa0qy72D7hzofJ1IOXcU7FVA9DwBewbe5wjd8txkA4Hv5PlfYG9QNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFpi4goAAACsFVJQNwBoCXaQslA3AGgJXCELdQOAlsAVslA3AGgJXCELdQOAlsAVslA3AGgJXCELdQOAlsAVslA3AGgJXCELdQOAlsAVslA3AGgJXCELdQOAlsAVslA3AGgJXCELdQOAlsAVslA3AGgJXCELdQOAlsAVslA3AGiJmyucTidcYSXUDQBagrVCFuoGAC2BK2ShbgDQErhClqV167puxaV88nXdrYSzA5UBanB8qp2gvPrz8/P7+zubRA0L9g1mA2gDXCGLrFspXlLIZtvVVJYyOgFSQCPMqrnTLm9EvakqiXVfwUFnBfrn56fM//v7O7aMHauYKt4PqFIBfDv7cIXr+dD1l/JgYe/D+fr4492orrDo5xDT4giZvpHkPtZMfImPHKtJblSuUMq3pdT5J33WCtAwO3OFdX0fZvARX8i7gi+aswRlOp/HTzjei+wrT6suzo07U5KNt3XA+HRfHYzH6zR9dj0B0AYvd4Xr+XD7zXno9aXv+vOj8W4F6lph7Dl2HS59N+l3T/ec+PTsLax2hUoNK8lbR6avzFBl85PL26nay4MqYPbeZZKRSv0jZhBZT/iwVoCGebErKHJ/6UdVl1enYXeBv/TdfYfo4Q/3lkHawPttwXmvIBkMVxg7BvOU2WZjFtEFXEEdojqQl5xswUb11HcF+YA/xqgmoaLmkTHllDoWEPC1vHqtUIj7s+W5zXMXcdUeqs2gyS7TI4kIe/8m0iY7SL6aOxIZj5Fpl+aJ6Lh6Kl0hfjzrE5G1whDbR5IxdXUCMdYEAL6F179XqHd9Yq4wiRqGodxQunE4X5Wwb3SFqqMkqPiqo1Qx1l34D8IRgZ61kzKySjs7eevGh4ArqJ9BWucKMtXsfKzbOR6Px+PRugrwQd72tnnc2imF/GECi9cKRaPrCm/43dvwM0iqVQwBVwiGOX0jSSKuoEq8dV/xEcfMMubNa4VIWHAHCVeAffJaV3gqeea9wr2xeK8wCZt5r7AfV6iuSpGNP3dXBxZqRwe/izXiirsYDJX3/WYQ9fRfKUu3kD/H4azTyOuHRTtF4z9IXAH2yavXCs99n4dYX/ru0Pe31uIjpd5nkMq+3aSj/Rmkt/3urXaF8rQ6Vq86lyIdIwRdYbZv5UnyloNOIA8irlCKtfNBVf+R3w/j5QE0zPu/ryDfGOTY3/cVBrEUkMfOs3PZoo7oPKT7j+c+jgPF5yMn5k9JefC2X5zIxvIp3hf9yiSsyJLqK9DVoiGy1wTwjXy/K+zvu80AAN/LPr7b/M1QNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJaYuAIAAABrhRTUDQBagh2kLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFri5gqn0wlXWAl1A4CWYK2QhboBQEvgClmoGwC0BK6QRa1b13Vq44148io40zfS3R9uPO0MrGBnaD8JALwfXCGLVbdRDS29s7S1Cl5tDLKjr7/xFmd6sl09iM8BAN7MFq5wPR+63ut8PR+eOuBGbsr1fDicr48/XoVfN0fmFl2ynMMRel+7fc+QjWrfWUuIxESCAeBtvMEVLn1XqPL07IUUZvBSX5h1BeshfYVh+KJp+YQ6B2cyYy9r3BWGJMNwBYB9kneFS3//fe8vQ7ksePiEI8lqsDy+ng+Hvj/IIca80zk8mgqnmp5tiqxbpcjyqjxQNXpWuK3MfnxEmi0bUE+t7pZnBOcGAB9h27XCpX8I8/V8eIj2TbKlM2jBlis89f7Z67HsmA71PJrYwOtsYfa9wjAnxM7BIBzCeuIe5lzBwsljHThT8g1Dzkedm4yUGQDgRWzqCpNlwWSraHyYf9qDGmy6gr3ymOxfFXmmYa/bRIq4gjyVl9SDwdZ6K7OaZGxxsjmuo/aKG5I1DcswnJsFgFezqStMjMDQ4fFZXw2edQX5WmLyKvvhOiLs464wuPquPnE7x75wqy1x74m7gvOAb921kzZ4v5Lj8Xg8Hp0AAIjzprXCNFo+zm+1VqgHsRo21JH8WsHqW3X0FwHO0GW7zGaNOJvfuQvH/+RNVdYi+0YWCrgCwFa8/r1C8SJguMf4LyHK1xHCFcp09/ai92QmM+8V3uAK/lN53BWc08H1AGsyvkU5qcqO8udshmoOEUfxGf8ScQWArdjkW2y3TRzjM0j1Hk8hzm5wf3koebUaKNKVr6C7ruumbzLUzyBtriPOd5t9gZNPytVTc5mqOo7YjCrNqjrLyfi3U3mMMyV1dJnQnzYAvJN2v9v8ue8rVPpoKb4jf46gVzGWPVQDyVN/zrPjOqmcW/MV38oGAO+kXVfYx3ebAQC+i5Zd4T1QNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoiYkrAAAAsFZIQd0AoCXYQcpC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJXCFLNQNAFoCV8hC3QCgJW6ucDqdcIWVUDcAaAnWClmoGwC0BK6QhboBQEvgClnUunVdF+xeRqq9ZlPJgNk8ken5Mc7V6tKK+S/i5+fn9/fXaZEBt8au67quk5fiY6mZAb4dXCGL7wqdRhkjfwZTyQCnZRCuUCVRY7TbnRmlmqc1bbUs6pQilOpsecDv7+/oBNIMyksSK7lqSLNJAHbO1q5wPR+63kt0PR+evymPSLXXbCp7hMP5+vjj5cy6gnUgT+MyLeV10KQ2OCU/rLzkI7svvWt1SlvhPNpHLpUHluhb/sSqAr6IN7vCpe8KqR7P1hqAPoHHCO/xBVk3RyWHQi5VSY0orHMsT+VYwTBH8VUWCfpWrrDo2Tyo5rLXbZ3h6/6K+QDsk21d4dLffwX6y1AuC4o1gaLTRa/r+XDo+8PjeMxzbyxzFR0Pff/Ie+mrgI3MxiazVhgF14qsAiqZHuYMw5qSzGMF+zkd/AyWdK4YaHCVunx/4LyBUNcB5SX1PYT/SoO1Anwpr1srXPqHgl/Ph+4p2l3XCWcoDWDUfbXxudiost4Oaxt4gy2sdoVR0B2JVzuqSQZDame7qDflaHpEyiMtkUtB4u8VKm9QXcE6GOxNpDLAcjt1VYFVwA55mStMlgWTjaNxafC0h4kBiJcNs43jYGIt8oZNJMsVfKV2NFqVcuvYSutPSR2rSm4NrQYvvXcfmcpnkSvI02G5PURY9K4CYD+8zBUmRmCI87icWOcKMv/0tYU98JZY7xXGY6dvpz2SO4qvSqfVRTbKURxXUA/8+TtpHY9xTn1XmHWXSvT9jabgDlL32IySA/kfZJLzkdOoOB6Px+PRugrwIj6wVphGP57x37JWeMWvWXAHSQao8u13UY8HQz1VtVXVanYUp6+aR96IP/n4qcqGawU/eXBEa8OqiukCO0i4Aryf975XeLbdeGz7r3CFte8VPu4K8pKjmIPY+ZF9K1+xrMVXbWt0p93R69l7XOQuPvHvrPnvCSKuMOYJLjtWbxON/0pxBXg/m3+L7fbBI+MzSNXXFSYP+93kc0fDrCsMzzcU/fk89xmk1/2arXaFQTzjV2LtSOTs83XEjfycTv4V8avXCrNEvlnmPLOPMY5LjVtG1lvlcgfJ+gxSx7tl+BKa+G5zZRv7+L5CdVo9C5cxlRkMhqqqeax4mVCOYo0uBw22O0MvtZwgi/67i8z3FZxGZ48IG4Bv5Htdofgo0/SlxR6+2wwA8KV8ryvsBeoGAC2BK2ShbgDQErhCFuoGAC2BK2ShbgDQErhCFuoGAC2BK2ShbgDQErhCFuoGAC0xcQUAAADWCimoGwC0BDtIWagbALQErpCFugFAS+AKWagbALQErpCFugFAS+AKWagbALQErpCFugFAS+AKWagbALQErpCFugFAS+AKWagbALQErpCFugFAS+AKWagbALQErpCFugFAS+AKWagbALQErpCFugFAS+AKWagbALTEzRVOpxOusBLqBgAtwVohC3UDgJbAFbJQNwBoCVwhi1q3ruuC3ctItddsKhkwmycyvRXjWpesyPy9B/n5+fn9/XVaZMCtseu6ruvkpfhYamaAPYMrZPFdodMoY+TPYCoZ4LQMQoKrJGqMdrszo6iXrIHy9x6nVGfLA35/f0cnkGZQXpJYyVVDmk0C8EFcV7ieD11veoV/dQWzCa/nw/M36BGp9lo1t+v5cOj7w+F8XdJr1hWsA3kal2kpl4PmQMEp+WHlJR8rSTm9De/9FTiP9pFL5YEl+pY/saqAnfBFrnDpu0Kwx7OtpnE93/zg8WcUWbdKqcfG8kCVVHladSmHUI/lqRwrGGYpvjOQvFT5web3HmHRs3lQzWWv2zrD1/0V8wF4P44rXPr7v9X+MpTP6e5Duho5aXxIbvHgf4+bJJyOPlhqXYTdH/Ufx+O0743VhB4dH6uDSz9eLQ4DZNYKowhakVVASRncBUTTz2MFWzmt7lVmdbZb3fsiHKUu3x84byDUdUB5SX0P4b/SYK0AOyS4Vrj0D0m9ng/uQ7oWWTQ+nvGfnbWE065Fkq4TzlAagDSYsvGZqpra4XydOMEiW1jtCqVuVi1+KjXJIKSzElCri3pTvivMZqhu7UX3voj4e4XKG1RXsA4GexOpDFD/pjrjTQZWAW8m5gqT5/SHuFob+mqksykzUfDpQZnkcfKgXHOIXvHG2+Qukxku2kSyXMFXakejLQW0JF5N609JHatK7ghxMIOM2fbebwSlc5EryNNhuT1EWPSuAuA9xFxhoszFBrx0BTVy+kagjH0gXaHE6mx7yWxjNcnzZIZJVxj1d5h7sHXUdtAUv2qRedQYeSrHsrLJefpX1Uvl/De/d98V/A8OdeKzQ/5GU3AHqXtsRsmBls5HTqPieDwej0frKsAKPrVWuG/c1KMoz/IWwpxes1aY/a0L7iDJAClzna3UgyHNZTYnfphKsyOy6ijq7fjzce5o23sfYk/TG64V/OTBEa0NqyqmCyyDcAXYlre/V7j1Kvpe+q5+6i+7luuVyXCPzf8VrrDwvcK2rhCX2rFFKmbZt9JWS15l91kjUeMtX6nyW36w4b3fWGoJVpdSgv2NIz//mCe47Fi9TTT+s8QVYFv8b7HdtnKczyBNKHR/GjkNfvrM/VTo++T6ZK9Hjvac5AJXKPL357PxGaTgb91qVxiMTRUp8WpHK6fs6EzJF2X/ktUYnOdW9x4h8s0y55l9jOlsxi0j661yuYNkfQap490y7IC//rvNYpdsq+8rVKclVUw39zisJpkVSlWCLbdwJN5S4aA6v/reZ1n0311kvq/gNDp7RNgA7I2/0xWK99zVy/GNvtsMAPCl/J2usCXUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCUmrgAAAMBaIQV1A4CWYAcpC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJa4ucLpdMIVVkLdAKAlWCtkoW4A0BK4QhbqBgAtgStk8evWdZ3fvQxQg2czyJhIl6U55dWKzSewIuHPz8/v7+/t57qBMn23TSW7Vy1q/p+fn9tfx9KhrWxjY2R0p13lz58///zzz6J5whvAFbI4dZsVVvWnlcRSYdlLbbFwhoukdW5tQxa5QnXg3LtUzyq+0kE/ydKx4rczuKpdjuvfTmTaZUJn9KAr3FKN0v/nzx9nPjjETtifK1zPh66vp/JsvJ4PXdd1h/O1iryeD/fGw/n6xvnKuvnS0NmP1Z0ru+qxmnndWNUlNcBJ6Iep8wlizWe2zv7Dr2RWhRex4bJj9UCbXFKd0rKiyo+rIcbFQblKYMWwN77EFdSr1fHDDN7sC6orOPGjxklBl6dVFzmEbHSk33eFoOKrk1dvwbqRRfhzrvA3VXzb2MQSgmNtm0cNrtZM6hAyRt2C8wMsC1HHZa3wFbzGFVTtvp4Ph74/3P8FjMJ/f/i/Pf4/4vt+GnZPcnk0H87XSxly6UsnmZ69mHWuMB53QjHLgyqgxM+mzqSbU9jZADVYRlaXnMilQ1QZqidWR+mc4/GptpK8zV8MZDI44uts76g7abNmYFV1KGpl3aZ/16wVvoL3usKo8pf+bgKTq0vCJse1DbzTFhxX8HW8Kx6uqxYr29LGpa5gBc929+e8whUqh7PMr5I/yxU6A2eLyd9FUVN98L2C9fw+eyDn7LtjPE9FZQbVokG6wi0At/gIb3YFVdCnCu73NVchkz2jd24i+a5gNaqnnXCF2ePqd68KGH/6BGOsya+42chYakkrVFeY3QCRx8P0Kdh/5zy70RRR8y5gEotcQZ7K+qgH1ljWG/vgdpM64eCyQF1SwNv4uCsMw2QraJUrjEuKYvydu4I8HjQNdYTbz9YJg/GHtm7BxwqLuMgiHFco1crSKct+1PeivhYHFV91lCrG2fG3Jjyry45Gy7u2RD+yVlBHH2KuoL5dKNU/6Aqn0+l4PCa36UCyA1e489j1ecFa4Xg8Ho/Hze5uyuq1Qkl1SR3IySaP1RY/WEaqMVUSNdK6I3/Q2flE8B+K/V1v6wWDmt/PFnzMD96LnySyVvCTq2MFCxhcmd2w5F6qf3AH6XQ64Qqb86LPID2f3i9919mCPv3E6VpXCLxX+JQrWNKvHgyGskvlXeEKjkOs6FVOyZH+97iCqub+RoqP9Sw/+1wcfIex1BKsLtWu16L7dTbf8q5gTUB9ybxim2g0A1zhFbzqk6njJ4v6i7sIeAZWHzeaHquucO/rfQZpNIOPuIKK+qxdXqpMxepYxlTG43dxJuknsQ4irmDNMIgzW0sWpRCrQl/hhDmCGNzKX8SsKzgLmup2HKOKvHjw98TU/TrZYi0ROl4p74/9fV9hHd/wfYVSGUuJrFRVzaD+Vju9Kgn2DUPGR+5o1kIcO1nKbEdHNCvnUJXRkjwn/9iuOpPzriLC0o0aVfH9cVUTnV1w+Nbrjyg/gKSewsdpxRX29N1mAIDvpR1X+BTUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaAlfIQt0AoCVwhSzUDQBaYuIKAAAArBVSUDcAaAl2kLJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoCVwhC3UDgJbAFbJQNwBoiZsrnE4nXGEl1A0AWoK1QhbqBgAtgStkoW4A0BK4Qha1bl3XqY03lg5RdrEyL81pdZxNVQVsNfTsfa0eCAAWgStksep2U7GuQAY4VEmqn+pYMufs5KU0+xmCLbP3pQ5tTc/PAwDb8glXuJ4PXb9isOv5MIrC4XytmseW6/lwOF8ff7wcv26OfsUvOWLqXI1YRTyzlUdtWXqPjiVEUgHAhnyNK1zPh8IKrudDd89RZSvM4D2+MOsK1nPurGKqHeVp1aVKEslszXNW7tXhnISyJs6c1fgyDwC8gi1d4dIX8jyeFE/496ujjpeCPhH3Sz/toRnJpe8O5+sYedf/yRyqs9cg62ZJ3nhVHvj6q3aRYw2a3FujqwP5x9as1DDnxqsYVfStaqiZAWBDNl0rFCL8OHzK+fNhf8YVilXBTfkHXd7vF2s7mcS9wRZm3ysMcyI7eyAl0lfkSKN6ySKSXJ2z5VKWc1gJZ90OALZi2x2kUYQ1NZZmoLpCrfJC+Yt89TWxZ/SGTaSIK8hTeckJlgZjCb1/7IxYRjqWE5F4S/GtLn5amQpXAHgpG79XuLuB2Md5EHSFksP5Gl4rjGuLB/txhcFWN6mJs72svkHhtlp821hkOZ2Gmnx2CCvPyPF4PB6PAwBswdZvmy9911+mO0kPoV6zVpjmrVsO56tI4rrCK+Qjv1Zw+lqSavWNmJCfpzKYYPLBMBJrquXoEVeYTYgrAGzF5p9Bui0MlLfEl76r1wrFs/3zavleoege+wzS/HuFd7qC/8Q96wpWsC/lapjjAdaEg5I9O+fZoTNrhfFvE1cA2IrtP5l66Tt1++i5hKi0vro66TR98i+2oqYGoXz0qTp7nXw43212dH8w9lik8MnTQShmddU5rqYUMZiyRZ2hOoRlEjLGufHgnAFgQ5r7bvMOvq8gNV0VPkfdSrmsWtRR/LEsqa3yy1P/vqpx1XmqQh+8KdUzpHkAwLY05wo7+24zAMB30aArvBnqBgAtgStkoW4A0BK4QhbqBgAtgStkoW4A0BK4QhbqBgAtgStkoW4A0BITVwAAALi7wv8BAMBfz3//93//61//+te//vX/ut5FvKQ0lp0AAAAASUVORK5CYII=" alt="" />

以上方法不做全部讲解,只讲解部分方法。此节没有任务,快快进入下节学习。

7-18 数组连接concat()

concat() 方法用于连接两个或多个数组。此方法返回一个新数组,不改变原来的数组。

语法

arrayObject.concat(array1,array2,...,arrayN)

参数说明:

注意:  该方法不会改变现有的数组,而仅仅会返回被连接数组的一个副本。

我们创建一个数组,将把 concat() 中的参数连接到数组 myarr 中,代码如下:

<script type="text/javascript">
  var mya = new Array(3);
  mya[0] = "1";
  mya[1] = "2";
  mya[2] = "3";
  document.write(mya.concat(4,5)+"<br>");
  document.write(mya); 
</script>

运行结果:

1,2,3,4,5
1,2,3

我们创建了三个数组,然后使用 concat() 把它们连接起来,代码如下:

<script type="text/javascript">
  var mya1= new Array("hello!")
  var mya2= new Array("I","love");
  var mya3= new Array("JavaScript","!");
  var mya4=mya1.concat(mya2,mya3);
  document.write(mya4);
</script>

运行结果:

hello!,I,love,JavaScript,!

任务

补充右边编辑器第9行,使用concat()方法连接myarr1和myarr2两个数组并输出。

使用concat()完成数组连接

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>Array对象 </title>

 <script type="text/javascript">

     var myarr1= new Array("010")

     var myarr2= new Array("-","84697581");

     document.write(myarr1.concat(myarr2));

 </script>

 </head>

 <body>

 </body>

 </html>

Array对象

7-19 指定分隔符连接数组元素join()

join()方法用于把数组中的所有元素放入一个字符串。元素是通过指定的分隔符进行分隔的。

语法:

arrayObject.join(分隔符)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgIAAAA7CAIAAACGzXXXAAAgAElEQVR4nO29d1xUx94/jve5aRZApRdhd2lLE7uJKE0wamxYggp2jA0QMYokqICJKPZCscV6FRUVe4mNqvS6fZctbGV7o+/5/fG5nu8GsOS5N8kTf+f9B6/h7JyZObNzPu9Pm1mT69ev19XVkUikRgx9gUwml5WV3b59G5siDBgwfJQwwWjg3cBoAAMGDB83MBp4DzAawIABw8cNjAbeA4wGMGDA8HEDo4H3AKMBDBgwfNx4Dw3QaDQajfbeVkgkEo1Go1Aov+uuvwX+NBogk8k0Go1EIsFkUqnUhoYGtNyjWu8rAOPrGDBgwPAheCsNkEgkKpVaWlpaWFjY0NAAF3vLd5BTJBLp1atXVVVVUC4tLX316tWf9AR/MP4cGiCRSLW1ta9evaqvr4cJrKioYDKZjY2NpaWllZWVMO0kEqm6urqwsND4Sm1tbWlpaXFxsfF1DBgwYPhA9E0DJBKJxWI9evTI0tLS29u7tra2qakJWOHVq1dUKhXqk0ik+vr6srKyBw8eODg4rFixorS09MmTJ+bm5s7OzlVVVR+Bcvrn0ACHwzlx4sSwYcPOnDmTmZlpZmYWGBhIJpMPHz5sZmYWFBRUW1tLJpM5HM65c+esra0nTZpUV1dHJpO5XG5OTo6ZmZmFhYWNjU1wcDAQyR83VAwYMHxk6IMGwA64d+/eoEGDTExMcnNzy8rKXr16dfv27UGDBllZWT158gT8PwwGo7i4ePz48XFxcYMGDZoyZcqYMWPi4+NNTEzMzMzq6+ubmpp6K6fkN/hTH/R/iz+BBkgkkkgkys7OtrKy+u6776ytrU1MTExMTPB4/JAhQ6A8b948NptNJpPpdHpGRoapqem8efP4fL5EIsnKyjIxMQkNDT1x4oSFhcWiRYvYbLZx4zDbGDdgwIChT/RBA3Q6vbKy0tvb28zMbOjQoRYWFoMHD8bj8TgcztTU1MzMbOTIkXV1dTQaraGh4cWLF/fv379y5YqpqemcOXPu3bv38OHDfv36DRw48MWLF2VlZUVFRahPqbGxsaGhobKysrKysqam5q943t+NP5oGSCRSTU1NZWVlenq6mZnZ/v379+3bZ2FhMXnyZDqdfvz48aFDh4aFhUGcgEQiMZlMGo1WXl5eVFRUUFBQVVW1e/duExOTSZMmVVZW5ufnP3r0CKVYMNcqKyurqqpqa2v/iPFjwIDh746eNEAikRoaGl6+fHnz5s2nT5/m5uaCNpqbm/vgwYOHDx8+ePDg5s2bBQUFdDq9qKjIzc3Nzc3N3Ny8X79+5ubmY8eOTUpK+uKLL8zMzMzMzMzNzUeMGFFTUwPWA5VKraio2L9//88//3zw4MG/hfvij6YBNpt96dIlJycnCwuL//mf/xk6dGhQUNCLFy8eP35cXV1dXFx89+7dZ8+e1dTUkMnk6urqly9fFhcXU6nUEydOODo64nA4GxsbExOT/v37u7i44PH4hQsXgjVAIpEYDMazZ8/S09N37dr1yy+/YGEDDBgw9EZPGqDRaKWlpUQi0c3NzdLSEgwCsAnMzc3NzMysrKzc3Nx8fX0rKyupVGp5efm5c+eAKubPn3/u3DkbGxtbW9uLFy+amJgMHDjw119/pVAooMnW1tY2NDTU1NS8ePEiIyPjb5Go+udYAxUVFbt377a3t587d26/fv3s7OyGDRtmampqaWnp5OQ0dOjQKVOmSKXSc+fODRs2zNbW1tzcPDg4uLq6urKyMjk52cTEZOzYsYWFhcXFxSUlJTDbjY2NtbW19fX1dXV1N27cOH78OEYDGDBg6I2+Q8RlZWXnzp3r16+flZXV3bt3L1++3K9fv0GDBg0cOPDTTz+9du1aeXl5Y2MjjUa7f/++jY3N4MGD//GPfwwYMMDNze3UqVOOjo7r1683MTGxsLCor6+HRMaioqLDhw83NDQ0NTVVVFRgNABoaGigUChyufzMmTP29vbz588HD092draJiUlAQAAUxo8fz+PxwH2EeoG0Wm1mZmb//v1NTEz++c9/Tps2jcVisVgsSN+6c+fOiRMnmEwmm82+f//+sWPHMBrAgAFDb/RBA1Qq9ddff3Vycho4cODJkyednJzc3NwIBMLdu3evXr1qbm5ub2//4sULFotVXFwMMYPTp09bW1tPmzbNxcVl48aN1tbWS5cuBRqoqqqi0+nFxcW7du36+eefy8vL6+rqCgoKjhw5gtFAo1Fs4MCBA5988snAgQNNTEyCg4NPnDhhYmISEhICBX9/fw6HQ6FQxGLxyZMnTUxMJk+enJ2d3b9//88++wxo4IsvvggJCamvr6dSqQ8ePEhKSsrMzKyrq6urq8vPzz958iRGAxgwYOiNPpxCRUVFo0eP3rZtm5OTk6urq6Oj440bN3Jzcy0sLEaOHHn79m0rKysikVhVVdXY2Hjv3r3c3NyhQ4cOHDjw4cOHxcXFt2/ftrCwWLlyJeQL1dTU1NXVZWRkJCUlpaSkZGRk7Nmz5+jRo1VVVf/3OaDxT4wNWFpaEgiE8PBwcPRbWVkZFyZOnMjhcEgkEo/Hg9Sg/v3729jYzJw5MzMz08TEZOrUqdnZ2aamposXLy4rK0tNTf3hhx927dq1b9++3bt3nzt37o8YPAYMGD4C9BEirq+vLygoePHixZ07d+7cuXPp0iV7e3tXV1cnJ6enT59WVVXdu3fv5cuXNBqtuLiYSCRCXumQIUOGDBlCJBIfP37s7e29aNGif/zjH66urtXV1VAzLS0NrAFIXMESRgHGsQEnJ6eoqCiwBnJycsAagAJYAyQSic/ngzUwfvz42tpaBoMBFQIDA7lcblFRUWlpKZVKvX///rZt2zIzM2traysqKiDC/EeMHwMGDH939J0wWlFR4efn5+HhAbFiR0fHq1evPnv27P79++bm5j4+PpAwCuLG1NTUwsIiJyenX79+Dg4OJBLp2rVr/fr1GzBgwP379xkMBmxEQGMDFArlbySS/px9AxKJ5MyZM46OjosXLzaW/gEBASD0gQaoVCqXy923b5+Jicm4ceNYLBYEFYYOHTp79myRSMRms5lMJsQGbt++feLECQaD8TfapYEBA4Y/H31vH6urq7t582ZeXl5eXh4YBLa2tng83sHBwdbW9tGjR5D809DQUFFRcf78+c8++8zR0XHw4MG//vrr3bt3LS0tBwwYYGpqisfjnz17hmYK/V32Chjjz6EBBoOxe/duW1vbiIgIExOTTz75xM7ODvjVwsLCxMTkyy+/5PF4TCZz//79AwYMMDc3HzRoUHBwcFVV1bNnz+7cufPgwYPCwsKCgoJXr17BbENS1h80ZgwYMHw06IMGaDTaq1evfHx8CG/g7Oxsa2v74MGD4uJi9DAJdN8ADodzc3O7ePGih4fHli1b7O3t7e3tS0pK7t27N2DAAB8fH3TfwN9RJ/0TaADCAzY2NiNGjFi5cqWpqenEiRPLy8tLS0tramoOHjxoamoaFhYmlUovXLhgZWUVEBDAZDIPHTpkamo6bNgwJycnAoGAw+EcHR0dHR3nz5+P7hv4O044BgwY/mT0bQ2g4QHAy5cvX716RaPR6HQ6mm0C1V6+fAmfksnkV69elZWVwb90Op1KpcJ5Z8a7iP92+HOsgerq6oKCgtevX1dUVJSUlFRUVDAYDDqdzmAwGhsbS0pKysrKYPtYQUEBeupcUVHRi14oLS39W8TeMWDA8H8Ebz1hFIQ+ij5zDcEHDZ+iZ02jlcFi+LsnKf5pJ4zCXMEE9jhHGq40NDT0LvfGR3CcHwYMGP5MYD878x5gPzuDAQOGjxsYDbwHGA1gwIDh4wZGA+8BRgMYMGD4uIHRwHuA0QAGDBg+bphcv369vr4efpYEQ29QKJTy8vLbt29jU4QBA4aPEibXr1+H3ySpwdAX6urqSktL8/PzsSnCgAHDRwmTq1ev5ufn38bwdty6devatWt/9SgwYMCA4Q+BSV5eXnNzc0tLixhDX5DJZPDLzBKJRCKR/NXDwYABA4b/Mkzy8vKkUqlGo1Fh6As6nY7FYt2/f1+tVqvV6r96OBgwYMDwX4ZJXl6eRCJRqVQKDH1Bo9Ewmcz79+8rlUqlUvlXDwcDBgwY/svAaOA9wGgAAwYMHzcwGngPMBrAgAHDxw2MBt4DjAYwYMDwcQOjgffgP6cBlUql1WrffeV/0VqPRvps8z/pyBhqtVqj0fQu/yftvLupd/SoVqt1Op1Op4OIva4X1Gp1nzdqNJr/9cjhdrTl/xY+sM23Vetx/R2tfWBHWq0WFQXG5f8Werf5X+nxA2/UarW9V0ufL7VWq1UqlfD3Q5p9RzXjT3vXRIcE3b1teD1u/MCBfTgwGngP3kYDSqWy93dmDJC/SqVSJBI1NTXpdDqFQgFiSyKR8Hi8/8UXqVQqxWIx3IsWVCpVa2trS0sLi8XqMUKBQMDhcKBrY/QpPY1hLC7hEZqbm2EG0PKHtNZDCovFYjabDfcqlUqhUMjn83vPg/FHParBgzOZTAaDIRaLBQIBtRfQoQoEApFI1NraCiPh8/nov8Zs8YEzz+fzBQLBO741lJ96o0dfIJShTaFQqFQqjcW0RqPpcS+Px2tpaYGRo6+qUqlks9kSiQQmWalUNjU1of8aQ6fTcblc46nuzQpwhcfjiUQitFOxWPx7V2mPwQNgzEqlksfjSSQStE3jK70/VbxFcAOMqzGZTLlcDqz/jpo8Hg9OYkfBYrGkUmnvZ+RyuS0tLTwer89PFb8VxFwu923VenzauyaHw6HRaE1NTTKZjMFg9FjJNBpNJpPBjWq1Wq/X63S6Hv/q3sJkvwsYDbwHfdKAUqmUSCS9BRCATqezWCwQyp2dnbdv3w4JCREIBCqVSiKRqNXqvLy8oKAgBEF0vQT0u2EwGM6ePRsaGgqFr7/+GkEQuVwuFAqPHj06b968zs5OVBghCHL58uW5c+carxiASCRCR8tgMJhMJowZvcjhcNCHRRDk8OHDs2bNQhAEygsWLIDBazQamAr0XgaDYVxG5aZGo2lra0tLS9uwYQOCIBqNxmAw7Ny5c8mSJWhT6GMiCJKcnLx48WKDwWAwGLZu3bps2TIEQWAG9u7da2NjY2tr+/PPP58/f55AILgZwcXFJTU1taurC0GQzZs3R0ZGtrS0MBiM1tbWhISEJUuWtLS0MJlMlC0+fOa/++67hIQEg8Gg6CXxQaYLhUJomUqlAlGhZWN5qtVqm5ubm5ubDQZDZGTkzp07EQQB+QvzKRAI4EuBv11dXQsXLty2bZtQKGSxWGhT3d3dy5cvT0tL02g0Wq0WQZBVq1ZlZGS0t7cbE4ZWq9VoNN9+++0vv/wCU93a2srn86VSKcoEQCFarfabb77Jzs6Wy+VarXb69Ok5OTnwvB8IpVLZ3NzcW9S2tLTo9frOzs6goKBLly51d3dD5e7ubn9//2vXriEIYjAYAgMDb9y4AYOEwRsLbhaLZVwGeQr27tSpUy9duqTT6Zqamnq/jy0tLWq1WqvV+vv7Ozo64nA4Z2dnHA6Hw+GGDh1aVFTU0dGBPgLoNKNHj37y5ElAQEBhYSGMp4fAZTKZoL9LpdJRo0YVFha2tbX1mA21Wi2Xy4cPH15aWtrZ2SkSiXx8fKqqqtrb2+GNkEgk3t7ejo6ODg4O1dXVQUFBbr+Fh4cHdOTp6fnrr7/y+Xw2m83n8729vZ8/f87n82k0GlDFf8gEGA28B33SQEdHx8uXL537Ag6Hc3BwsLCwmDNnTmtrKyzTM2fOfPPNNwiC3Lx5MyQk5OTJk0Qikcfjoarxh0ClUiEIcurUqTFjxiAIkpOT4+fnJxKJQBRGREQoFAq1Wg1mAcpGiYmJQUFBqNbMYDA0Gk1eXh4ej4d1NmzYMBsbGycnJ2traw8PD5Cka9euRd/Vtra21NTUsLAwsVgsEom2bt06ceJEIBIOh2MwGHJycqysrOC9srW1NS5/9913BoNBqVS2trb++OOPISEhZDKZxWIJBAIEQWBsIpGIwWCAUgw96vX6uLg4lAYSExPnzZsH+heCIHFxcVFRUQkJCYsWLdLpdLW1tSUlJQUFBQUFBSUlJTU1Nc3NzbDJIz4+3sLCwsrKytLS8sCBAykpKRYWFpaWlhYWFng8fvfu3fCM74VarUYQJDIycu3atcBhPSS+SCQyGAwJCQn29vYeHh4eHh62trZo2cbGZv/+/SBPtVqtWq2Oiorau3cvgiDffPNNUlKSVqtdvHhxcnKyXq9HEGTNmjV2dnbW1tZ2dna2tranTp2KiYmxs7MjEAhWVlZZWVnQlEqlkslkc+fOPX78uEKhgB+ACgwM3Llzp1AopFKp6JSGhYXFx8dzuVwYs1AoDAkJ2bVrl16vhwoIgkRFRd25c2fatGlnzpyJjY29detWWFjY0aNHjYXyuwFKz6xZs+zt7XE4nKurK/w2qoWFRX5+PhCnn5/f6dOn0fFLpdIxY8ZkZWWJxWIul+vh4XHs2DFYqy0tLe3t7WFhYQ4ODrCcLCwsjMtPnjzp6uqCdrhcbnBw8PPnzyMiIlxdXY0lKR6PLy4uBvXIxcXlX//6l1gsZrFYbDabzWbjcLh79+51dnYav2U8Hs/X1/fly5dEIvH69et8Pt+YUcC1GBYW9ujRo+7ubo1Gg8PhioqKULZA32iVSsVgMDw9PYEGxGKxl5fXkydPoI5GoxEIBM7OztevX3dxcSkrK2tubi4rK4NfFIcfFadQKCqVqrGx0cnJydHR0czMjEgkPn/+3M3NzdHREX6D1svLi8FgfIhCqX6D3h/9xTSg/P0do9u4/pAB9cK7rQHWb8FkMvl8flZWlqurK+rTaGtr02g0XC5Xr9dfuHDB3Nzc2tr6s88+w+Px8+fPb29v/xAmAGeISCTat2/fqFGjlErlv/71r08++YRIJEZFRbW0tLDZbLFYbDAYrly5Ym5ujsfjnZ2dXVxcHBwczMzM4F88Hm9jYzN//ny9Xl9fXw+/dbxx48aAgIDk5OQRI0bU1NQUFxdXVVVxOByYYQRBjh079u233169etXDw4NIJFpZWQ0cOJBIJLq5ucXHxyMIsnPnzoCAAJlMJpPJNm/eHBgYCOVNmzZNnToVFL3MzMz+/ftbWlq6u7vb2NjExsa2t7enpKRYW1sTCARbW9vY2FiQDgiC7NixIzw8HFRjYIUNGzYsX74czJG4uLj4+Piff/55/vz5CIIcOHDAycnJ19fX19cXh8Nt374dQZCurq7k5OT169eLxeLVq1dv3Lhxx44dsbGxYrE4Ojp6xYoVfD6fx+N9oHQD58C8efOioqKkUmlra2tiYqKNjQ2IJGtr6/T0dARBIiIiIiIi4JCW4ODghQsXQjkwMHDz5s0IgsAXvXTp0sTERDDX5syZk5SUFBMTs2/fvvXr1ycnJ+t0uhkzZmzfvn3evHk7d+5csWLF0KFD09PTuVyuTCabOHHijz/+CIaRWq0GHVOr1cbGxrq5udnZ2X3xxRfW1tZubm4EAuHSpUsIgmzatMnS0pJAINjb2zs6OgIzWVlZOTo65ufnw6i4XO6rV6+4XK6/v/+uXbvIZLJGowkICEhNTQVnhUgkeu8qVSqVXV1do0aN2rt3r1AorKioqK+v5/F43t7eV65cCQ8Pz8/PDw4O/uWXX0AzMBgMkydPvnjx4ooVK2BUn3/+ub29PSyt58+fGwwGb2/vnJwcqVQqEAjc3d1PnjwplUr5fL6bm9vVq1eBxbVabWdnJxyFwGKxKioqioqKQJKWlpY2NjaCNQA0cPnyZXhZuFwul8vtQQNgCowdOzY/P5/P548cOXLw4MHDhg0DA8LZ2Rl0+aamJvgZ9rt37zY3Nw8bNiwvL4/H41GpVHDvKJVKkLa+vr4PHjwAulWr1VQqlUgkVldXt7e3Aw24u7uXlZURicSKioq2traRI0cSiURfX19vb29nZ2c2my2Tyfz9/UtLSxsaGoYPH3779u2goKDXr1/X19d7eXk9f/4c6rz325HL5QKBAPyivT/9C2lAqVSqVFJJy++5Ry6X8/l8Pp8vFov/qHH9Fm+LDahUKrVazefzm5qa2Gx2U1MTh8ORSCQIgty4ccPPz6+rqwu8QKAwarXa27dvz5gxQ61WZ2dn+/r6gsu7B43DQuzt3u3u7r579y6BQLC0tPz88883bNhw48aNr776qqqqqqKiQqFQHD58OCQkBEGQ06dPh4SEwCsBWg+Px4OyVCrdt2/ftGnTEATJzc11dHT08/Ozt7c3Nzd3dHQcOHCgn5+fi4vLqlWrwNek0Wg6OzsTExOnTJmi1+tLSkqqq6tjYmK++uqr6urq4uJiMpmMIEhaWtrkyZNhnImJiaGhoVDesmXLjBkzQHYnJSWFhoa2tLQIBIKYmJgFCxYcOHBg1apVsDrXrl07Z84cBEG0Wm1ra+uGDRuio6NR9QpBkNTU1Llz52o0GgRB4uPjV61alZKSAnXWr18fHBwMAnfOnDkLFy5EEAQ0xObm5q6uLjabDYKsubm5ra2tqampqampra3NWC0CXbVPRam7uzstLc3GxmbQoEE2NjY2NjYnT57csGHDkiVLhEKhUCicMWNGTEwMgiDfffedpaWln5+fn5+fubm5cTktLQ3IKSYmJjk5ubu7WyaTyeXytWvX4nC4I0eOGAyGtra2yMjI06dPR0VFHT9+fPXq1dnZ2atXr96xY8emTZv27dunUCjmzp2bkZEBYpTL5VIoFC6XCy8Fk8kMDg7es2ePUqksKyurqqoSiUQ8Hq+srKy8vLyxsdHHx2fdunUNDQ1FRUXl5eWlpaW1tbWgOkRHR3t5eVlbW/fr18/GxsbT0zMvL2/ZsmWOjo6WlpZ2dnY3b958r+UENDBu3LizZ88iCDJt2rSrV68iCDJu3Ljc3NzAwMDc3NyQkBCgAb1e39LS4unpmZub29zcXFxc/Pr1aw8Pj59//rmqqqq0tFQoFLa3t48YMeLUqVPg9vT29j5z5gwsGC8vr+vXr3d3dyuVSrB9eTyeQqHo7OwMCwtzd3f39fX18fGxt7cHTVyn03V0dAQFBeHxeHd3dzc3N3d3d3d3d1tb27KyMpSh9Xp9U1OTs7Pz8+fP586de/fuXTAIwICgUqlyuVylUgUHB7u5uZmamtrb21tYWJiZmaFUYWFhAVSh1+spFIqPj09dXR2sZBD9I0aMePDgQXt7u06nEwgErq6ud+7cGTduXG1trUwms7KyOn/+fGVl5aNHj4YMGVJRUaHX6+l0ukajaW9vr6mpkclkTCYTfFwNDQ2gJBnLpT6jBVqtViwWZ2Zm7tmz5+DBg0KhsMdS75MGlOp/B2Y0auVvLmhUSoVSpdHpdDqtWq35TR2j23QalVKh+E1NrUalVKIVtBq1WqORMakvjp16olSpNCqlQoF+rNWqVUqVRqfT/r97FUqFQq/XczicQ4cOpaenZ2dnw8p799L8z/E2Gujs7Hz69KmFhQXuDRwcHEAQX716dfjw4a2trV1dXU+fPoWPpk+fLpVKX79+rVQqT5486e3tLZfLQSShzYIzEZwtvelBJBIJBIKMjIzRo0crlcr29va8vDxfX18vLy/w7YSHhxsMBh6PB+o8kBNIQ+AqDodDIpEaGhoQBNm3b5+Xl1d1dXVCQsLkyZN//PFHsAbWr18/ceJEeDE0Gk12draFhcXKlStv3boFtGFra2tqaurn50cgEFavXo0gyJEjR/r3708gEAgEwuDBg43LkZGRQAM//PBDeHg4Gl0YOHDghg0bwENt/Klarf7hhx8WLlwIMQZwYtBoNC6Xu2nTppUrV6rV6p9++umTTz6JjY1tbW1FEGT//v2oNeDs7JycnAwcplarW1tb9Xp9QkJCUlISgiDt7e0IgmzZsiUhIQH6grnVarXg4wLNuscCAL6fPXv2smXLJBLJzJkzd+zYERcXFxcXB48TGRkJNIBaA9XV1WFhYVFRUdXV1cbWgFqtrq+vr62tVSqVq1atGjBgQFJSUn19fUNDA5PJ5PF4oC7MmTMnJSUlIiIiLS1t/vz5oFwvXryYQCDs2rULBtzV1RUXF4fD4SwtLU+dOgV3bd68WSQSqdXqxYsXnz9/HkGQtWvXenp62tnZOTk5OTg4uLq62tvbOzk52djYgFcwNzfXYDDw+XwKhRIaGvrJJ5+kpaVxudzw8PA9e/bweLyRI0empaWBexN9I/p0E6E0cOrUKQRBRo4cCYWxY8fm5uaGhoZeu3YNaABBEJFINHv27M8///zx48eRkZFubm7Dhw//4osvnJyc/Pz8HBwcHj9+bDAYvvzyS2trazwej8PhPv30U+Py/fv3gU5mzpwJbqIXL14gCOLi4rJv3z7gEjs7u/z8/K6uLhaLRaPRKioqXr9+jXpdwFwgkUg0Gg0sBjabPWnSpM8++6ywsFAikSgUCiKRePPmTYlEwmazUScEnU6nUChsNptOp9vY2Ny7d6+5uZlGozU0NNjb2xcUFHR2dlIolAkTJly9ehXecRqNBi7ZsrKyL7/88smTJ5DWAQZcWVkZxCf8/PxQa8DJyYlOp0OYp62tjUQiBQYG0ul0BEE6OzuFQuHYsWOpVGpXVxfqTdVoNPCT5hCsQhewWCyWyWQikYhGo+3fvx+8psbfXS8aUCoVSrmYQ6fRaHQmVyRVKJUqlULYRKPRaEyeVKGUi7h0JpvdLBbyaDQandXcolSBgJRL4DYWhy9RKBVymRCtSWdwhFKFDCowWByxQielFP4c5USIPtlAbZapVEqVSiFi06hUGp3FEcsUIg6dyeE0iwRcOoMtlCnBKyKTycRicXV19cGDB//zwMiH4G000NXVlZeX5+LiAiuMz+fn5OR4enoa0wB8AXw+//jx41999VVpaSk49czNzc3MzCwtLXE43Lfffgt+IXCgX7t2DYfDzZ07VyaTGb9poJsjCHLhwoXRo0erVCqlUslgMF6+fFlQUPDy5cvS0mzbZCIAAB5cSURBVFIqlYogyO3bt11dXfF4vKurKw6Hs7Ozg47AqiUQCGvWrAFrwMHBAawBU1NTNzc3BwcHX19fAoGwcuVKUF2zsrJWrly5d+/eiIiI7Ozs0aNHG1sDq1evDg4ORq0BcARt3bo1NDQUyt9//z1qDWzfvn3KlCkikUgkEsXHx0+dOlWj0Rw8eHDJkiU6nW7btm1z585FECQ9PX3Dhg0nT54E3xEaZnB0dExKStq1a9eOHTuOHTv2z3/+MzY2tqOjo6WlpbGx8fXr18XFxaBRNjQ0gAdDq9Xq9fq1a9cuW7ZMIBBAdFEkEi1cuHDBggXGuU9arXb79u04HC4lJaV3Kp5cLkcQZOnSpRAYiIqK+vHHHzdu3AixbgRBFi1aBDSQmJiIw+F8fX2NrQFfX99hw4YdOXIEdVW5urpaW1ubmpqam5s7Ozv7+voSiUQIIWRmZkIXQ4cOHTRoEGiaR44cSUhIyMjIaGlpWbly5e7du8HFweFwhEKhv7//kSNHduzYYWZm5uzsDPZKTk6OQCAQCoUCgYBCoUyaNCk9PZ3FYtXV1X311VeZmZnz58/ftGkTh8NpaWmBtbRgwYLLly/PmzfP2tr68uXLAoFgypQpeXl5M2bMyM7OBjeU4k0QGFKSekxUDxoYN27cmTNnetMA2AqzZs26ePHixIkTb968OWnSpLS0tOrqag8Pj927d1dXVzs5OV2+fBlBkBEjRqCOIG9v79OnT0PZ2BpoampiMpkEAuHmzZsIgkyePBmPx3t4eICyX1RU1N3dPW3aNGdnZy8vL1hR8CkA/KUVFRUdHR1hYWE3btzw9fV9/Pgx0DaEeaBOZWUlxIFhabW1tQkEAj8/vwcPHoBoVqlUrq6uxcXFWq02KCjo3r17U6ZMwePxQ4cORc0FJyenhw8fhoSE1NbWqtVqOzu7zz77DLR+DodTUVHx6tWrwsLC0tLS169fM5lMhULR1tZWV1fn7e399OlTNptNo9FYLFZ5ebmtre3Tp0/BWwhOJzKZ7O3t7eLiUlNTAz5VrVbL4XAyMzOFQmFnZ6dEIjlw4MB7aUCp1iglTc93h3u7uRAILjP3vxYptdKmp/vnebm5evgsOFhAo1yNd8UT7AM2bVvlgifg3WbsKeJJta0aIfXetlCcs9Mwu2GE2YcqFTIR49J6JyeXYQGxCStHTPzuZHHd7W1hzk5Ow+zwxEWHXtScXWtn1q+fqf3wL1OfKDRqIelGUogzztnJxffLjb+Un1zt6OxBCNkQv8LPf/VFippEoeRkZ0MYislk/l+ggevXrw8fPhx83wiC3L1719fX15gGIJMBQZBr166NGjVKrVaLRKLMzMxRo0adPXvWw8ODx+Oh+Srd3d0XL14cP368TCbLysoKCAjo7Ow0jkZAbCAnJ+eLL77YsGHDw4cPbWxswPj19fV1dXWNiIgwGAxisZhKpdbV1VVUVAiFwpSUlNGjR0ulUvALMRgMiCI0NDSUlJTU1dVt3rzZz8+vrq6upKSkqKjo9evXVVVVkJHG5/NVKtX+/fsXLFhw4cKF/v37+/r6WlpaQmzAwcEB/PUf4hTat2/fgAEDwEowNzdfsWIFvGaxsbHr16/fu3cv0ACPx+Pz+S0tLRKJZPXq1SEhIeB4Wbly5cKFC4FZExISVq5cmZKSsnXr1hMnTtjb2zs4OAwbNszZ2Rnc34mJiQaDQaVSpaSkDBw4MCUl5fLlyy4uLsCCpqamgwYNIhAIECI2GAzr1q1buXKlTCZbunRpTExMj9wY+N6XLFmydetWrVYbGRmZnp4eGxtrTAMbN27UaDS1tbXFxcUwq6GhoZGRkfX19egVsMS5XK5QKPz6669XrFhBIpGKi4tBLa2pqfH39werZfbs2Tt37oyIiEhNTY2OjrayskpPT+fxeBwOh8VizZ49++jRo11dXaAWTJ069aeffoLsIzqdPmHChNTUVKlUumDBgqysLJVKFRkZmZKS0tzcvGbNGl9f30uXLslkspaWloiIiCNHjuj1+u7u7qioqKNHjyoUihkzZpw6dWrp0qUQLj59+vSMGTOOHTsGNAC5PbNmzTIzM8vLy+s9UR9CA+AUYrFYra2t48ePv3HjRmhoqKOjo5eXFxobsLCwePjwIdDAu51CCoVCr9d3dXX5+PjcvHmzq6urpqYGLEgmk1lZWQkZekwmk0ajVVZW+vj4XL9+XSQSGYf0IPYL/iWlUkkkEiH8q1Ao3N3db9y4AfXhFDZ4WGDiUaNG5efnh4WFPX78uK2tTSqVuri4FBQUtLW1MRgMpVIJ9reVldWtW7eam5tramrs7e3Ly8sFAoFCoRAKheAUmjBhQmlp6ejRo8HrC8EbPB7v4OAAAUgfH59PPvmkvr4+JCQEFKNhw4b985//dHBwgBBxZ2dnU1OTp6dnWVlZQ0MDkUgkkUhtbW0cDmffvn2pqalMJlMikTAYjOPHj/P5/HfSgEqjlfKYeQlTt1588KDw0YEfTtVx6JSrCbN2XH36+MHNHfMcph98Saq+utHniyHO6y/VVpVe3RJMmHHwtUzMI19PHLv1Wm1FwYFvh9pO31feolE3115Y4/6ZBWHDv8hsBq0qd+v4pBsNFc/3zhtiP+tYJfnV2S2BTqtP19PEWinzVfZqz7n7njEayx6lLXIZ+f3plydWunxuQ0y4SmPx6snU1LS0jIyM5uZmiURSV1eXlZX1l9PAjRs3iEQi2IYCgeDEiRM9rAFUvl++fHnEiBGQxXj69OnZs2ffvHlz5MiRYB1Dg93d3RcuXBg3bpxCocjOzp40aZIxDaCxASsrq4CAAIVCcerUKU9Pz6qqqsLCwpqamsTExPHjx3d3d0Nay7lz5yDFMysr68svv5TL5ZAaIRQKgZbweLynp6ebm9vgwYMhR8jLywuPx0OAce3atV1dXdBUenr6/Pnzz549GxgYSKPRfvzxR39/f6FQSKfT+Xz+BzqFtm/fHhYWJhAIBAJBbGwsRAIQBElJSVm3bh1KA5D6rVaru7u7v//+ezQs/P3330NAGEGQ2NjY+Pj4tLS06OjolJQUUM9XrlwZHx8fExMTExOzePFi6HHbtm1xcXHR0dEikaiqqorJZAoEgsjIyIULFwoEAggRGwyGtWvXrly5UqFQLF26dMOGDT2kW3d3d0JCwqpVq2Qy2bp167777ju9Xh8ZGWlMAzt27Dh06BCBQPD29gZOMjc3h8wWUEIJBMLx48dR2R0dHW1tbe3n5+fzBn5+fmZmZnv27EEQZMaMGcaxgZSUlISEBFAnHRwc9u7dC+cBKxQKBEGmTJmyZ8+etrY2mUwWGRl56NAhpVK5cOHCn3/+WaPRREZGZmdnb9u2zcvL68yZM+BDh29To9HMnj0bRHZ1dbVAIAgLC0tKSpJIJEwmU6fTTZgw4cKFC9OnTz98+LAxDcybN8/ExAScTsYTBTQwcuTIEydOIAgyevRoUPxHjBhx+fLloKAg49iATqfr6uoaM2ZMXl7ezJkz09PTm5ubvby8jh49CnEOqVTa3t7+bqcQSGoIp3l7e9+6dQtBkLlz5965cwfGNmPGjMLCwo6ODr1eD63l5OQ0NzeDyxTA5/PR+dTr9SqVyt3d3ZgGUKcQ+I7glWxtbaXT6Z6enuXl5Twej0gklpaW6nQ6oIH29nYwK0EQDx8+vKqqCkEQmUzm4uJSWlra3d2t1WrRELG7u/uzZ8+IRGJeXt748ePB4r9165abm1thYeHUqVNv377t7u5eVVVVU1MD1kBZWdmwYcPAPpDJZJAsSyQSIQ7k4eFBJpNVKlVmZua2bdt27tx54MCB/fv3Hzt2DM3+MMZvaUCp1qokvML0r/FeRPe1Z2pIIpmYfmHV4KH2Lu5ubq5O9nYe22430X/9abJ9cPJTQWuHoun+jiCH9Ve4IoVGJmKwORxy2aWNX9p9vae0RauXsh4mB9qHpr4UqNv0WqVEwGBzuKTSczHj7Gccq2wi3dn1NWFzvkLfpW4qO77ScXJGmard0CmquZw4xX1dTu73k5y+2VeuEEvEhw/s37ZtW2pq6sGDBzMyMk6dOvUhqQv/FbyDBh48eNCvXz/j2AA4SXrQAFyBoPHZs2fDwsJUKtW1a9fCwsLOnTs3adKkjo4ONCXm6tWrOBwuPDxcKpUaf1vGsYEJEyYgCHL58uUBAwYMHz4chIiDg0NYWBgEDxEEOXr0KOSVnj179vPPPwer1tnZedWqVQaDARIKWSxWTEzMuHHj1Go1hLjj4+NDQ0MFAgGbzUYFTXp6emhoaGtr64EDB+Li4o4cOQLCHULZCILs2rUrODgYRPzmzZthk4RAINi0adPMmTN7xwZ27twJ15VKpVAo1Gq1qFMIHhb5bbIQgiCbNm2CzQpQXrFiRXJy8tatW3fu3Lls2TKlUhkdHb1w4UKZTBYfHw/D43K5Op0uJiYmLi7u8OHDsbGxkI65du1aCGmAQgQeVXAK7dy5E3o0XgAqlUoul8fExKSnp69fvx4U9kWLFhnHBuLi4iC6SKfTp06dmpycvHTp0q1bt65evXrp0qUsFqupqQldsQiCfPvtt8uXL6+urkad1NXV1YGBgZDmNHv27NTUVMgUWrBgQWZm5tKlSzdv3iyTyQIDAyHajE7U1KlT09PTt2zZQiAQIKlm+vTpO3fu7Ozs1Gg04DCBjng83po1azw9PU+fPt3R0SESichkslAoNBgMGzZssLCwAP62srLKzc0Fv01WVtbcuXPPnDmDUiMslQkTJoA0N54osNRDQkIuX76sUCj8/f2PHTsGMdu8vLzZs2ffunXLOFOoo6Nj9OjRly5dUqlUc+bMuXHjxtSpU+/fvw9LS61Wt7W1jRgxIisrCxIxPD09c3Jy+Hw+i8Xy9PRErQGVStXR0UEkEu/cuaNQKMrLy728vK5cueLv73/o0KGmpibYIaHVaseOHQsWIZrbDVsHiouLwTUP/jGUBlQqFZFIRJ1C4BeCbRkMBsPf3//hw4eQa+Dr61tSUmJMAzBXCoVi+PDhDx8+1Ol0Wq1WKBQSCITS0lLIHoQQMeR6FBYWenl51dXVVVVVDR8+/O7duy0tLW5ubuXl5eDA9PDwAEooLS2FVxiPx5PJZPCMQXckEgmcQtXV1cBtbDY7IyMjNTUVcrLBvu8tOXvGBpQKubylmd5Yd+fHMM8RvjFna6ovxuGXHCispnM5XA6/SSgU0u9vD7GfdrBC2dapaLq/I8g57hq3RSNjV1+I9/FyJThaWFhPPVSjam2VMh8khzjOOFItV2p1rSJ6+blYL6IrwWGope2snEYe6WZKGGFzvkLfrWWXH4iyct5wVaxFuiSUG6lT3NdlX9kShJ+f06jW6rRUCjk1NTUjI4PH44GI+WsTRhUKRWdn5507d8aMGQOxAQqFAjuSEATJy8tDaUCtVnd0dJw8eXLy5Mm5ubnTp0+XyWRdXV3d3d337t1zdnb++uuvgQagL7lcTiaT2Wx270RgEIjnz58fN24cWBWgZRQWFlZXVyclJU2cOBG0jI6OjoyMjMDAQJVKlZOT8+WXX6JOIYFAAPuJEAR5+PAhuJIUCoVMJjt+/HhUVFR7eztIEOgUaABC32q1euvWrXPmzAE7oLW1FcyFtLS0sLAwVLufMmUKlH/66afp06ej1gAaG4iLiwNrQC6XQyJQYmIi2C4KhQKShdatW4fuLAPRj7JISkrKoEGDIOcyLi5u3bp1//rXv8zMzAYMGHDixInk5GSgAXjG7777bvny5Wq1et26ddu2bQMaAJcUOrHwfoJM7B0ilsvlIDQXL168Zs0aiGlHRkauWLECHic8PDw+Pr61tVUmkwFPdHR0LFq0aOvWra2trdHR0Tt37oQAHUoDK1aseIc1sHDhQjMzMxsbG3t7+88+++zMmTPLly9PTExUKBShoaEpKSnGNBAeHm5ubn7ixAmZTCaVSlevXj148OADBw6glsfGjRs9PT19fHw8PT3BICCRSC0tLeHh4aCtg+syLCxs+/btdXV1EydOBHWey+V+/fXXP/30E2xPU7wR9BEREVlZWT0SVNAlClu7YT/Xt99+m52dLZVK5XJ5c3Nze3v72LFje9DAhQsXEAShUCgBAQHHjh1js9mKN1p5d3e3j48PcJLBYPDy8oKNZgiC+Pn5oQmjer2ez+ePGTPmypUrERERPj4+lpaWzs7OlpaWbm5uRCKxpKQE5DKXy6VSqZQ3gLwJBweHe/fuoVsQjGlAoVC4u7vn5uZCUhaFQpFKpeDwmTBhwp07d9ra2kAQCQQCoC5nZ+eXL19Cd62trRQKhUgkVlZWGgyG9vZ2mUzm5ORUUlICNCAWi+3s7Ozt7SsrKyUSiZubW0lJSWhoqImJiaenZ0NDg6enZ2VlJYIgPB4Pj8fX1dWRyeSvvvoK0lLxeHxtbW1rays6+RqNBmLRqDaj1WrZbPbx48eFQuHbcuEUfTiFWrjMvMT5B57Vl7+4u3upd/KN+soTG7x91p+uZ3BZDObDZy+aKXd3BNsFJd9tpDWUX0maSoy/3izkUi5v8gzddvHZozvZa8YODdj+kCFWcKvObxhnEbD9EUsm5dWfj/MMS7r84tGto6tGW07e/bS6PG9niN2qU/U0gbql6fXBRXaEabtfNDW+fpgZN3bL6aeZ342zCU17yhIpNXqdrrGxMSsrC4Ief2Z66zsOk4AzIfR6PezRhe9DIBBkZ2d7eXmBI1un0509ezY8PPz69euBgYG1tbVsNhtSSCkUSlFRUX19fQ+tX/fmIIoeABtz7969oOZfunQJ9g24u7t7enpaWVkFBweDuX348OGoqKhz585FRUUdOHBgzJgxqFOIxWJxOByxWEyn02tra+vr6w8fPgw+nAULFkDis/GmNpDmQUFBer1+z549a9asuXjxooeHR3R0tFAohMdPSkqaP38+bPXavXv3ggUL9Hq9SCTauHEj7BtAEGTPnj2ffvopdGRqagp+G+Wb8x4SEhKWLl0K0kGtVicmJq5YsQJ2aUFcNzY2dvny5RCDiYuLmz59OtDDunXrIiIidDrdkiVLZs+eLZFIli5dCo3D4KOjo+FfoVBIIpEgRAy+JuO5fUfCKEzFunXrdu3alZSU9P3332u12nXr1qGhjs8//3zfvn2HDx/G4/FpaWkwsPDw8NjYWARBVCpVbGwsHo8/fvw4SBZwXCxZsqSmpga1BiA28MMPP4CpsXXrVggFzZo1KycnZ+3ataampgQC4dNPP92/fz86eIPBMG/evB07dkBay8KFC3fv3i2RSBYuXJieng7utbq6OrQXMAhcXFxwOFxWVhYojMo3+5YXLVrk6el5+PBhhUIhl8vnzZt3+vTpZcuWHTt2DI2cK5VKJpMJu6h6zxWs5G+++SYzM7Ozs7OlpWXKlClnzpyBdwQyRMG2ABoYPnz4hQsX5HL5N998c+XKlaioKFdX16tXr0J8CJJh8vLyuru79Xq9v7//jRs3pFIpm82GaqCw83i8kJCQW7duzZw58/jx45WVlaWlpUVFRfC3oKAA1RrRoylgPHw+n8vljho16smTJ8bWAB6Pf/jwIXxZeDz++fPnoI7o9Xq1Wk2n0/39/Y05QKFQwNa8xsZGMAva29tVKhUkCz19+lSr1TKZTCaTWVdX5+vrW1ZW1traCtYAkBBo946OjpWVlVQq1c7O7smTJyQSCRiiq6uLy+U6OjpWV1d3dXXR6XQmk1lRUWFnZ2dMA4DeCaOQqCKXy3t/Xyh60oBeLmRdWuPo5IjDuw7323SWIdSo+eSc5cOcnJyd8Z4jt+Zzm5tepE4YMGiovZOzM8HDK+5Ck0TXoWiuOxFpO4zgQSRODf5yiC1x7OKDj8/FuDlaDLHEjVh+lixi152ItHEkeHp6fh00foit11eRB+7mLLG0cfQYufwsSaNuJt3YMtFmGM7Za/zqow/Lz2zA2VoMsXQdu+pso1yl1qiVyj43PvzReMfRcj0Obuvs7Hz+/DkOh7O3tw8JCYGEUThJQiQSdXZ2Xrt2zc3NDd1vDCnMkZGRH7iDDAwIOzu7WbNmGQyGc+fOBQYGNjc3U6lUPp+/f//+KVOmGAyGixcvTp8+XaFQdHR0nDlzBlKb0UwhZ2fnhISER48ewQA8PDxgLxWfzz916pS7u7uzszO6hVihUBgMhoMHDy5duvTixYvh4eGwc5XP5x87dgyPxycnJ587dy4iIgLeH3DyqFSqs2fP4nA4Gxub1atXAz389NNPc+bMgY62bNkCO4S7u7tzcnJwOFxsbCykuHV3d6enp0dFRUFo/fjx42C8JyQkQAXYVAw7GwwGw5YtWyCvaevWrYmJiZcuXbK2toYQMQw+Pj5+zZo1wB8HDhyA3V7JyckffkZCd3f3pk2bYmJi9Hq9VqtdsWLFoUOHEhMT161bB4+zePHipKQkyNMQi8VardZgMCxbtiwpKQlYmc/nk8lksMdhVDExMbDHGM1X8fDwsLa2hg0EcLROa2tra2urQCDQ6/WLFi364Ycf+Hz+zJkz9+zZgw5eqVTyeLz29vb4+HgcDnf06FG4S6FQzJkzJysrq6urKzY2Fu3FxcUFkojIZDL85iA8YHR0tLu7+y+//MLn8+fNm3fz5s3o6Oj9+/eDcJw+ffr58+fRJfE2PQwk+5w5c44dO9bR0QFHmEgkkrCwMBDZERERQ4cOzc/PBz9Ge3t7UFBQfn7+okWLTp482dnZyeVyORzOjBkzYOvvt99+e+HCBTA7lEolpC3MmTMHPDlPnjzp7u7W6XRff/31hQsXOjs7+Xz+9OnTjWcVUFpaCuq58ZsLO4FxONzjx49RuQnLePTo0U+fPgX7YPTo0c+ePUOdPHK5PDg4OD8/H+UAUB0CAgLAxVRQUAAbxSUSSUBAwP379zs7O+Vyub+/Pw6HIxAIJSUlwKlAA35+frW1tV1dXXw+f/jw4bW1tSqVavTo0VVVVRMmTBgyZAiZTO7s7OTxePBpZ2enTCYbO3ask5OTvb09lUrV6/XvXcPvPT6rt1NIIRfzWXQqhUKhMfgylUqpVKlkQiadQqFQqHShUivhPE0NsQ3efq+ewmAyWUK5SqVUKRWKFgGTTqVQqawmNpPJYDQ1iwUcOoPJZNDpTQKponcFfouYz6LTqLQmgVSpVKkUYg6dSqHQGFyxUiHi0OgMJoNBZwuk/15kf8lW5w8/YRTsAwqFAnnuUB9yDEDTlMvllF7ocR7cOwDhARqNhh4t19zcDGnF4JGATsGzD457qVQKKRNkMhntEawBKJPJZC6XC7KjpaUFqqGBAcWbc+XgVDXYzQAn2UkkErhXIBCAFx7qg1oNggZ8RzAP4MqDjtCT9VQqFSoidW+O3uPxeDweD95MyGc3rgBNGR8eB12g+ZF0Ot34XAq0gkqlam5uJpPJxgdXfOC0s9lscKahxwEJBAKxWAyPAy5X0DTReAPUQX19xqYGjIpOpxt/KTAwOC+oxzFzGo0GPVoOPYrOeH1qNBo2m00mk1ElXafTcTgcIB42m23cS+8j6qAOEENrayvkETQ1NUFrOp0OHv8Dd1xDdBe1FSB0CcoBbARBo6wg2WGfo0wmA/c9hFgoFAocVAXXoSkQr2BGo+0olUoGgwHbRKCv3q9Y79xWAIPBoFAoyjc7flFAHi3cYlxG7+oti2AnAZz9AB/J5XK0plwu710B6nA4HDgcCcpwkBxcBK0fEmHQT6EMXmgWiyWXy/8rIdK+to+p0FP6NP9OI/33Fb1er9PJWZWXNo4fOin5AUOsa2vVa94IjDe3/dv00qpVaEOwPey3FbQatMKb3WZGu9aUv733r8PvOmha+ebYUdRKMLYYVH2dxPm7DoI2dhmp3nLQ9Ht7BFeA8b89Kvew9yF7BxSoHiPpff1tTanfcnA0vL2at5w+jZ7g9o4KUEaPGOnh2wEp2aO19ypHPWDcCMho47NZep/W+baLxp/2/l7eMTC0tbc123tLFwjN3n31Kc2NbwdlH02eUfzO85/fcZQ0vPc9BgnLtcdF3ZuDl3v3a3wyc+8eP/woaeOOel83brxHhT4Pee49qt7t9DmYPvuCQu/HRMvvfbTfi99zmIRSrVW3cIsOzHaxsxhs6eyzKKtSLFer/1ox/Ufjd9EABgwYMPzt8PvOFFIq5DJJM4tGZ7AYdHoTv+VdYYePAxgNYMCA4ePG7z9a7v+dHKRV//9AKmI0gAEDho8b2O8NvAcYDWDAgOHjBkYD7wFGAxgwYPi4YZKXlwcJXioMfUGn07FYrPv376O5KBgwYMDwMcHk2rVrcF6bCENfkEqlZDL5zp07YrEYNnZiwIABw8cEk1u3bt29e/fevXt3MfSFe/fu3blzB2YJAwYMGD4+mHR2dnZ0dLRjeDs6Ojo6Ozv/6lFgwIABwx+C/w9rq7QbtXsaJQAAAABJRU5ErkJggg==" alt="" />

注意:返回一个字符串,该字符串把数组中的各个元素串起来,用<分隔符>置于元素与元素之间。这个方法不影响数组原本的内容。 我们使用join()方法,将数组的所有元素放入一个字符串中,代码如下:

<script type="text/javascript">
  var myarr = new Array(3);
  myarr[0] = "I";
  myarr[1] = "love";
  myarr[2] = "JavaScript";
  document.write(myarr.join());
</script>

运行结果:

I,love,JavaScript

我们将使用分隔符来分隔数组中的元素,代码如下:

<script type="text/javascript">
  var myarr = new Array(3)
  myarr[0] = "I";
  myarr[1] = "love";
  myarr[2] = "JavaScript";
  document.write(myarr.join("."));
</script>

运行结果:

I.love.JavaScript

任务

补充右边编辑器第10行,使用join()方法,用分隔符"-",将数组myarr3中元素连接,并输出。

1. 使用join()完成数组分隔。
2. document.write(myarr3.join("-"));

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>Array对象 </title>

 <script type="text/javascript">

     var myarr1= new Array("86","010")

     var myarr2= new Array("84697581");

     var myarr3= myarr1.concat(myarr2);

     document.write(myarr3.join("-"));

 </script>

 </head>

 <body>

 </body>

 </html>

Array对象

7-20 颠倒数组元素顺序reverse()

reverse() 方法用于颠倒数组中元素的顺序。

语法:

arrayObject.reverse()

注意:该方法会改变原来的数组,而不会创建新的数组。

定义数组myarr并赋值,然后颠倒其元素的顺序:

<script type="text/javascript">
  var arr = new Array(3)
  arr[0] = "1"
  arr[1] = "2"
  arr[2] = "3"
  document.write(myarr + "<br />")
  document.write(myarr.reverse())
</script>

运行结果:

1,2,3
3,2,1

任务

补充右边编辑器第8行,使用reverse()方法,将数组myarr1顺序颠倒,并输出。

使用reverse()颠倒数组顺序

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>reverse() </title>

 <script type="text/javascript">

    var myarr1= ["我","爱","你"];

    document.write(myarr1.reverse());

 </script>

 </head>

 <body>

 </body>

 </html>

reverse()

7-21选定元素slice()

slice() 方法可从已有的数组中返回选定的元素。

语法

arrayObject.slice(start,end)

参数说明:

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAgUAAACRCAIAAADcllwmAAAgAElEQVR4nOx9d1xU17o2OTlHY4yA0qRImYGhF1FKsCMgtliwYomJFY0lGBMVS+wKiooGRUWsgDRRERsqTXqTOswwMDC9V2YYYGZ/f7zH/c2hRc899+bmZj9/8NvsWXvttdv7rLcunbT/BUhJSUlNTf2jR4EBAwYMf12kpKTo1P6hqKurq6mpyczMLC8vr6+v/2MHgwEDBgx/QdTV1VVXV6elpek0/qFoamqqr6/PzMysrq4mEol/7GAwYMCA4S+Ipqamurq6tLQ0nYY/FI2NjXV1dZmZmVVVVU1NTX/sYDBgwIDhL4jGxsba2lqMDzBgwIDhrw6MDzBgwIABQ0MDxgcYMGDAgAGA8QEGDBgwYGho+Eg+IJFIJBLpd/sikUhEIlH7kMbGxo8fx9B8gHau3XP/swy251PHgwEDBgx/NfwOHzQ2NjY3N5eUlBQUFNTV1cHO/vRAIpGamppKSkoqKiqam5uJRGJJSUlxcTF6yMeMY2g+KC0traysbG5uLisrKy4uJhKJZDIZ3UYPKSwsLCoqampqQveUlpYWFxcXFBT02Y8BAwYMGLQxFB80NjZSKJQ3b96YmZkRCISKigoqlQr0UFJSAlkCDQ0N9fX1JSUleXl5OBxu2bJlb968KS4utrS01NfXz83NbWlp+chxDMYHRCLx/fv3zs7OW7ZsefnypZOTk56eXkpKSklJiYODg56eXlJSEqo9+Pr6fvXVV/fu3YM9jY2N7u7uenp65ubmo0aNunv3LqYlYMCAAcOAGIoPiETi8+fPDQwMdHR07t27B5Px58+fGxkZ6erqPn78uLm5mUQi1dTUTJo0adeuXfr6+gEBAR4eHrt37x4+fLiOjk5+fn5HR4e2CG76gP7jGIwPKBRKY2PjuHHjVq1a5enpqaOjo6OjM3bsWEtLS9g2MTF59eoVhUIhEokFBQV4PN7MzCwnJ4fBYJDJ5HHjxuno6Ny/f9/Ly8vKyio7O5tCoaCdDzYeDBgwYPirYVA+IJFI1dXV7u7u+vr6BgYGhoaGo0ePtrGxweFwenp6urq6jo6O5eXlZDI5Pz//yZMnjx8/NjQ0DAwMTE1NLSwsHD16tI6OzqNHj6qqqsDWBJRQVVVVWVlZXV1dX1/fZxyD8UFxcfGbN2/Mzc2XL1+emprq7OxsaGiYkZFRWVnp4uJiYGCQmpoKlEMikdra2qqrq4uLi/Pz8wsLCwsKCoA2EhMT3759m5GR0af/6urqAceDAQMGDH81DMoH9fX1+fn5Dx8+zMnJSU9Ph5n4nTt3nn/Aw4cP3717V15e7u7uTiAQDAwMPvvsM11dXVdX10OHDo0ZM0ZXV1dPT09PT8/GxiY/P7+tra2+vv7y5cunTp06ffp0RUUF6nxuGIQPiERibW2tt7e3hYXF3//+91GjRhkbG9+6devVq1elpaVVVVXZ2dnPnj0rKyuD9u/evcvPzwfK8fPzs7S0xOFw//jHP3R0dCwsLGxtbXE43NOnT0E/AGtSXFzcqVOnTp48WVRU1Nzc/D9yzzFgwIDhfyMG5gNw27q4uBAIBGNjYz09PQMDA9AS9PX19fT0jIyMCASCg4NDYWFhTU1NWlrasGHDdHR0goOD79+/b29v/8UXX9y7d2/MmDE6OjppaWlkMvn9+/f19fU1NTWlpaVnzpwBD4T2OAbTD4qKil6/fm1pablkyRI9PT1QU8aMGaOnp2dtbW1iYqKvr//ixQsKheLn5zdu3LjRo0fr6endvXu3pqbm2bNnFhYWOjo6ly9fLi8vz8/Pf//+PZTpQMdTWVkZFRWVl5eH8QEGDBj+yhjKf1BWVnb//v1//OMfo0ePfvjwYUZGxrBhw7766qtRo0aBrlBeXk4kEnNzc62trceMGfP5559/+eWXpqamCQkJVlZWYWFhurq6n3/+eVFRUUNDw4ULFyoqKlpbWxsaGqKioj6eDzo6OlpaWnA43NKlS8EMlZSUhFqBrK2tdXR0srKyWltbi4qKcnNzTUxMdHR0cnJyyGSym5vb3/72Nx0dnVGjRqWnpzMYDAhGev/+fUxMTGFhYWtrK5lMPnfuXG5uLsYHGDBg+CtjUD4gEolv377F4/HDhw+/du0aHo8nEAiWlpYZGRmZmZkmJiZjxox59epVbW2tu7u7kZHRzZs3x40bFxwcbG1tHR4ePnbs2LVr13711Vd///vfs7OzL126dPjw4cLCwtra2rKysgsXLpSWln4kHxQXF+fm5lpYWIwaNerzzz///PPPHzx4gMfjdXR0kpOTbW1tdXR0nj592traSqFQyGQyMMTdu3fHjx//xRdfAB8MHz58xIgRd+/eJZPJNTU1Fy9ejIiIePPmTW1tbVVV1cWLFwsKCjA+wIABw18Zg9qLiouLvby89u3bh8Ph7OzszMzMUlJSHj58aGZm5uDgkJWVZWNjY2VlVVBQ8PLly8zMTCsrKx0dnfT09MLCwrdv35qYmKxbt05XV1dHRyciIuLo0aOHDx+OjIyMjIw8d+5ccXFxH6H/u/6D4cOHh4aGQrCTqakpeAXGjh0LG8AHQDA4HA5+0tXVTU5OJhAIoEl4eHiYmppmZ2ffvn07IiLi0KFDkZGRUVFRUVFR+fn5WIgRBgwY/uL4HX9ybm5uVlbW48ePHzx4YGlpCcSQnZ1dU1Pz9OnTwsLCioqKCRMm6Ovr6+joQCSSubn5y5cvJ0yYsHLlypEjRxoZGT1//jwmJubw4cMFBQUQzwO1tvuM43f9B2vXrgU+SE5OBqGflJSkrR8QiUQSiQT6wf3799+/f08kEsGy9PTp0/r6+ry8vNraWm39APwHMID/7nuNAQMGDP+b8Tvxpp6eng4ODg4ODvb29qampvfu3Xv9+nVOTo6JiQkejy8vL29tbX379q25uTmYlfT09EaOHFlaWpqTkwMkcf/+fSqVWlVVBf4DyGQecBxD5B+QyWQ8Hr9q1SpwUAM5ATHY2dmhfNDS0lJWVjZ27FgdHZ2UlBQ2m02hUDw9PQ0MDF68eMHhcKhUKmQbACUUFhaSyWRMM8CAAQOGhiH4ABXQ6enp6enpqIqAw+HGjRtnYGCQmZkJVSsqKirS0tJ0dXXHjRv3xRdfpKWlQa7yV199paura2Rk9PDhQxKJBPE8Q4xjiPzk3NxcU1PTlStXAseMHTt29OjRurq65ubmEAiblZXV3t7+7t07e3v7UaNG6enpffnll5BD9/Tp0ydPnrx9+zY/Pz8/P7+2thaNL/r4choYMGDA8H8eg/IBhJx6eHjgP8DGxsbQ0PDRo0dFRUXFxcXNzc1kMrmiosLNzc3Gxsbc3DwxMdHFxSU8PNze3l5XV/fZs2dFRUVmZmZmZmb5+fnaWcEDjmNAPiASiXV1dV5eXvr6+tu2bbOystLV1U1MTKysrCwtLc3Ly4NzvXjxorW1FYpVpKSkVFdXg0IDBIbH4y0tLceNGzdu3DiIRGpoaGhqasJsRBgwYMCAYqh4U9SFAMjLy0NpAC1BAW3gJyKRWFpaWlZWlpeXB+ldZDIZShuh+clDjGOIenYFBQXv3r2rrKwsLi4uKioiEoktLS1kMplMJpeWlhYVFUH/0Ax+BbbI7QfIP/gP3kEMGDBg+L+B36lvSiKRyFoYsOo1tEErRoBTl0wma//6uyJ4aD6ATtCe+5SzRvf03+4PjAwwYMCAYUBg6+FgwIABA4aGBowPMGDAgAEDAOMDDBgwYMDQ0IDxAQYMGDBgAPx/Pmj8Q9HU1FRfX5+ZmVldXQ2VqDFgwIABw/8kmpqa6urq0tLSdGr+ULx//766uvrhw4dlZWVQUgIDBgwYMPxP4v3791VVVWlpaTqP/2g8evQoNTU1MzPzjx4IBgwYMPxF8ejRo5SUFB3OHwoul8tkMp88edLa2srn8//YwWDAgAHDXxA8Ho9Op6enp+tI/lBIpVKhUJiVlcVgMORy+R87GAwYMGD4C0Imk/H5/PT0dB3RHwqxWMzn87Oysmg0mlQq/WMHgwEDBgx/QUgkEi6Xi/EBBgwYMPzVgfEBBgwYMGAQiTA+wIABAwYMgD8ZH8jlcrFYPMSvnYNgiKMG7EcikfynWmq3Gaz9p/bzSYP83a5kMln/rmQyWZ8H0X/Pfwr/wZ6lUmn/p9+/c5lMJpPJPmZgaDOpVPoxh/wX8btn+a83+KSWEolELpf33/6vtBnsRIN9vJ2dnX2O/d3ePhJ9+hGLxf277b9zwGZD7B+ize+ecYhzDXG7hh7DEPgz8YFQKKRQKGKxGIRXf26gUCjNH9Da2komk9F/eTzex1NCR0cHtO9DMP17oFAoQqFwCFkmFos7Ojq4XK5YLBaLxTQaDbb7tIH9A/IZXGyfY+FfDofTpyuZTDbYK4JK/D7HisViOp3epyuxWNzW1sblckFegFik0WhsNhtt1v9c/x4/icViBoPBYrGGfkADCnoAev/FYjGLxdJ+DZqbmykUivaw0TNyOBylUtm/E/Tq5HI5k8lkMBjoNpPJ/Pi3qP+ApVKpttTrL4th/AwGY7CzwMOi0WiDffNisZjNZtPpdPhMtM/e53RwEzo6OoYQH2KxmMPh0Gg0eHvRbbQBnAL2w/X2bwP9cLlc2D/gqMRiMY/Ha21tbR4IZDIZrghaKhQKkUhEp9MVCoVMJtOWjNpidLC3RbsNj8fr6OgY8F/tnXDD4dj+e9CWfD4fDh9wSHC7xGIxCA3tQ+BftB+BQAA74VwUCgUuU7uNUChsa2trbm4mkUitra3wF/5tb2/X7vCT8KfhA9g5ffr0V69ewRvc0dHB5/PhNkmlUrlcPmvWLAKBYG9vTyAQDA0NcTgcbBMIhNra2u7u7t8dBgRd+fj4PH/+vLu7m0ajoaQCiREoSSiVyu7u7vnz56elpXV3dysUCvQNQJ8cvLuTJ0/OyMhQq9VKpXLKlClpaWm9vb3aF65WqydPnpyUlCQQCLQ/A6A0DocjkUi6u7v9/f2TkpIQBFEoFGq1OiAg4NatWxqNRrsrKpUKB7a0tKCdwDYqE9Vq9ezZs69cuQLHIggyZ86cmJgY7a7UanVoaOjp06fhA6DRaD09PSEhIZcuXUIQBF7r9vZ2tHPY4HK5qIT9eG7QaDShoaFHjx6FAfShGXjuICjRi6JQKNrbKJlpNJqffvrJ3NzcwcEBnruDg4Opqenx48e1rw5BkO3bt3///fcsFmtAzgAWl0gkP/744/bt20GO7969OywsTLufIQDSFnoGfmppaWGz2VwuF/23PwUiCHLkyJFly5ZpNBrtyTsqQxEE+e2339auXSuXy7XJDG2p0WjOnj0bEhKi0Wi4XC4qYVtaWoBmtLtKSEhYvny5TCYbsCvo7cqVK3PmzFGr1RqNJi4ubvbs2Wq1Gr1GFoslFApv3rwZHBwsl8sFAkFCQkJQUFBPT4/2pSEIcvfu3WnTpnV3d/P5fHRUqKBXq9VPnjwxMjKyt7dHv1n0CVpbWwcHB3d1dYG0YjAY8fHxEyZMoFKpVCpVIBBAh2QyGaUuLpcLe7TPBdutra0wtu7u7ufPn/v4+MDz7e3tffPmjaenJwgBGHlvb29+fr6LiwuZTKZSqRQKpaenp7Cw0MXFBSQvhUKBW4EgSHFx8cSJE+EGwklJJBJKMPAVv379OjAwUCwWd3V1KZXKkpIST09PgUCgUqmAObq6umpqapydnZlMZk9PT01NjZ+fX319vfYHpVAompqazMzMCASCra0tyDpDQ0P4197eHqL2P+ZF7YM/DR+IRCI6nV5XV+fo6FhSUqJSqdzc3PLz81UqFfza0dFRXFxcXFxcXl6el5dnamp69erV9+/fl5SUFBQUkEgk4NuhhyGRSBQKhZ2d3YsXLxAEmTx5soWFhY2NDawVmpub29PTg5JES0tLRUWFs7Pz7du34ePXpg24KKVS6eTklJSUpNFourq6nJ2d79+/j35RcEY+n+/l5ZWZmblx40brD4AzmpubP3/+XK1W9/T0jB8//ty5c2w2u62traura8KECTdu3EAQBL2BPT09a9eutbGxMTIyMjc3h2EbGRmZmZnZ2NhkZGT09vbKZDIEQfz8/C5evIggCIj7qVOnooJee1SLFi2Ki4tDEGTBggUXLlyYPXv2vn372Gw2i8XSaDTbt283MjIyNTVFzxgbG8vj8VpaWigUSn81aEDAeObPn79//34EQWQyGZPJ7C/rNRrNrl27QNCDiNfejoyMRLktNDR0yZIlNTU1sFx2TU1NcHDw1q1b0RsFdL5t2zYjIyMcDmdtbW1nZ2diYhIREYHKegRBDh06dP78+Z9//vnHH3+8dOnSmTNn9uzZs3btWgRBOgcyQPWBWq2OiYmxsbEZO3assbExbBw/fvzWrVvovzt27OhD50qlMjw8fNmyZQiCoIoCTMyBRchkcktLy5YtW+bNm4eSWUtLC6q4IAhy4sSJgIAABEGuX79uZGQEr4GZmdm3336rTRJkMplCofz4448BAQHaXWlrJwiCnDt37uuvv9ZoNAiCXLhwwdfXV/suJScnb9269d69e4GBgc+fP9+8efOtW7e8vb1h1oIqlz09PefOnZsxYwaCII8ePTI0NIRRmZubz5s3r7u7G0GQO3fu2NralpeXFxQU5Guhqqrq6NGjjo6OKpWqt7f37du3sBTuqFGj8Hj8+vXrCwoKoEMLCwt/f3+FQtHb25uXlwd70HOh23PmzJHL5VKpFEGQZ8+e2dnZKZVKuVze3d2dmJjo4eEhk8lABYH53JMnT/T09HA4nJGR0dy5c9Vq9evXr6ErXV1df39/iUQiFAppNFpaWpqFhQWIKTjpuHHjxo8fDyYEhULx8uVLAoGQm5vb0tLS0dGhUqlKS0uNjY3fv3/f2tra3t4uEok6Oztfv37t5OQkEAi6u7tVKlVeXt7MmTP5fD7KGUqlsrKycsyYMW/fvk1NTR07duytW7eMjIxycnLS09MNDQ2pVOp/Ox+IP8UcMGBj6QcM0H5IPlAqlVwu18vLq7i42MfHp6ioiMViOTo6Ah9Ae1dXVxBMo0ePxuPxw4cPt7KyMjY2hn/19fWLi4t/V0WQSCRtbW12dnaJiYkqlcrOzi4hIQHmdNbW1o8ePQJhCtLW2tqaQCDo6emZmZnhcDh4A/T09F68eAEaAHzh7u7uDx48AD7w8PBISkrSnmGp1eoZM2Zcv35dpVLR6fTW1tbW1ta2tjY6ne7k5BQdHa1UKiUSCYIgU6dONTAwwOPxhoaGOTk5QUFBZ8+eBRGP9kalUhkMhoeHx4kTJ0CgjB8//tixYywWi81mS6VSKpUK9HPixInu7m6JRLJ06dLY2FiNRsNkMvl8vvY3DEcJhcIFCxaYmpqOHDlyzJgxeDz+3r17IBT8/Pz27t0rEAimTJly7NixPXv2mJiYmJmZmZiYxMXF/e5UGqbhfD5/1qxZP/zwA5/P7+rq2rFjB3CMjY2NsbHx+fPnQRgtWbJk1apVUGXF399/5cqVsD1z5sxdu3aBuEcQJCwszNDQ0MPDw9XV1dXV1cPDY/To0UA2cEaRSLRt27a9e/eKRCK41W1tbStWrPjpp58QBJFKpWKxmMlkVlRUtLa2fvfdd6GhoWQymcvl7tixY/HixXw+n0Kh9DeJ9L80FoslEAg2btw4b948gUCwefPmLVu2nDx5ctasWVwud9OmTfPmzUNZCgZ/9OjRBQsWAEceO3YMFAWNRnP58mUjIyNbW1tbW1s7OzszMzN9fX0gMxsbG1NT0w0bNmg0GjBT7N27d8aMGVKp9MSJE35+fpB0+vPPP4M4vnHjxujRo1EiNDc3B2FnbW2Nw+HGjh0LJ0WHdOHChalTp8IjiImJmTJlCvwKc/Camprm5ubo6Ghvb28KhdLe3n7z5k13d3eYtbS1tcEnEB8fv3jxYi6XKxQK4+PjXVxcOByOQCCIiYnx8PAAPsjIyPjiiy8cHBxQFcHBwcHV1dXNzc3W1jYoKKirq0smk3V0dJSUlLS1tVGp1MbGRhKJlJaWZmtry+Fw4uPj8Xi8QqGQSqVcLpdOp9+4cQOPx1MoFFApcDgchUJpbW2VSCQ8Ho/JZCYlJeFwOCaTqVQqnzx5EhQUxOVypVIpjUaTy+UqlSo3N3f69OkMBgPItaamJjMz08nJqba29s6dO05OTmQyuaenp6qqCofDmZmZ/eMf//D39xcIBO3t7Ww2+9GjR1ZWVjwer6enp7q6Wl9ff9SoUQQCwdLS0sPDQ6FQ5OXlAbVYWlq6ubnJ5fKGhgZ3d/fGxkZ0BkAmk2GRYBKJ1NLSIhQKu7q6QCK5uLg4OzubmJgYGxuPHTvW1dXVycnJxcWFx+P9N/OBWCrhc/mij7NLQeN+RiywxoKI6XvEkHzAYDCYTKaVlVV+fr5QKBQIBG5ubtnZ2SDRpFIpn893d3fPysry9vbW19fPzs52dXVNS0vz8fHR09N79eqVt7f3mzdvUD6ASWKfTxqcS8HBwcOGDTM1NS0vL584ceKzZ89Am3ZxcXn8+DGCIL6+vsnJyRwOB2Q3jUajUqmtra1UKpVOp/v4+GRmZqJ80Nvb6+LikpaWhiBIfz6QSCRsNtvBwQEMQWw2u6Ojo62tjcFgqNVqb2/vu3fvIggC5sIpU6b89ttvTCbT1dU1OTl58eLFxsbG9+7d6+7uRilBLpeDWnPt2jUEQYBFrl69CnP/3t7eDRs2GBsb6+np6enpPX36dOXKlT///DP4S2bMmBEZGdnV1QW2ICKR2NHR0d3dvW7dukuXLonF4mnTph06dEggEAgEAphezZ49+8CBAyKRyN/fPyoqSiaTATF88803R44c0RZ2og+GIO15glqt/vnnn01MTHR1dU1NTU1MTO7du7du3bqwsDAWi8VisWbNmrVnzx64EBi5h4eHh4eHvr6+kZERbI8ePfrXX39F+WBo/UCtVu/Zs2fDhg3t7e3t7e1gbdiyZcuqVatAUrDZbI1Gc+rUKUdHR0tLy88//3z06NFOTk7nzp07c+aMubn52LFjTUxMjh07pq3kDfAFiMVsNlskEoWFhS1cuFAkEm3btm3btm0nT55csWKFRqMBbQOVvDKZrKura/v27atXr4bJ9U8//QSiGUGQvXv3Tps2jUqlVlZWoloCmIx5PN7OnTv9/f0RBFGr1Xfu3BkzZsyXX355+PDhS5cuzZ49G0GQnp6eqKgoUBouXLgwZ84cMNrAnJRGo8E2n8+PjIycN2+eNh/ExMRMnjwZHoE2H6jV6vT0dDBQDBs27Msvv3R0dAwLC3vw4AFob4aGhnCBd+/eHT9+PIlEunv37tq1a5OTkz09PXk8nkgk+u2337y8vFD9wM3NjUajtbW1AU83NTXBQywrK6PT6SKRqLe39+XLlwsXLoTXLyMjY/369U+fPh0/fjwoK35+fgqFAuyZCIJkZWW5urr29vYiCPL06VMXFxcw7apUqqKionHjxunr6+vp6QUHB79588bJyam0tJTH4yUnJ7u7u4Mg4nA4LBarqqrK2NjYzMwMnXQ6Ojr6+PjQaDSYrkkkEhaL9ejRIxwO19bWJpFIwEH1+PFj4AOwO1lYWBCJRDqd/ujRIzwe/+TJkxkzZlAoFDqd/vjxY0tLS4FA8OLFCzs7u9raWicnJwKBAJRPIBBwOByBQPD19QXGam5uLikpgZuTnp5uYmKSk5NTXFxcUFBQVlZGJpNRGYs6M4Z4XbVl4GB8IJb+05Arl0mlYmZ74aVrz9gcgVwq0fqtUy4Vi0QikUQK/0hlCoVCxqEXXb72lMnmdcolH153gUAQFxcXGRkZFRVFo9H6e7cG5AOZTMZms728vPLy8lxcXAoLCxEEaWtrc3R0LC0tBZsviBgwZ1dWVpaXl/P5fFtb27y8PDKZXFpa2tLS0tbWhppx5HI5qMzosSgUCgWdTicQCA8ePEAQxM3N7enTp7NmzXr58qW3tzcI+pqaGjAdUqlUkN3t7e0wYYEvlsFgoE5gLpfr4+Nz586drq4utVrt6uqakpKCzlVVKtWyZcuGDx8OmsfcuXNB8zA0NHzz5o2/v39CQgJ8itOnTwexjiCIt7f3/fv3Z8+eHRsbu2LFiuvXryuVSrFYDHougiCTJk3qzwdg5RAIBBMmTLh8+XJQUNDNmze3bNmCw+GcnZ0dHBxMTExGjBgBPonNmzfDe3/37t22tra6ujqQ9UeOHJFKpWQymcViwZwdvo2RI0eCxWnu3LlXr15ds2bN0aNHtfmgs7MTTGo8Hk/bLC4Wi2fOnLlz504ulxsYGBgZGblhw4aIiAgY/NKlS1E+QPWD6urqoKCgNWvWVFdX19TUBAQE/PjjjzC1RxBk//791tbWbm5uoB+4ublZWVlFRkaic3+xWPzjjz+OGzcO1fCMjY2NjY3t7e1NTEwOHToExEyhUDZv3vzFF1+sW7eOQqH89NNPwCKrVq0CeYS+OeBH7TOJAXsRHo/X09P76quvYGP//v2nTp3avHnz2bNnly5dCk8NXkiFQrF///5169aBLnj8+PFvvvkGvIgajebYsWM//PBDfHw8GKzgXQJdVqlURkdHg8MAtLqIiAh/f3+lUnnmzJlly5bdvHlzw4YNsbGxwAdUKrW6uhp9ezs6Ouh0Ory97e3tjY2N9fX1qM+mq6vr7NmzAQEBMKrLly/7+fmhby/4Qs+cOTNixIjJkycTicRr164FBwdTqdQzZ864ubnxeDyNRpOammpoaGhrawsT5/T09OHDh+NwODweb2xsPG3atJ6eHgRBbt++7e3t3dPTA1+TUCh89uyZm5ubs7NzaGgoXC/4nM+cOTN9+vT79++7uro2NDTEx8dPmjQpOzvby8tLIBDASwUOkidPnri6ukL/WVlZwAeosyQhIcHV1fXBgweenp7v3r0zMjJycXFxcHDA4XCjRo2aOHEiGDMQBHnx4oWFhUVJSUlhYWFBQcH79+9jY2NxOJxcLpfJZDwej0QicTicJ0+e4Nv3U4oAACAASURBVPF4UJsMDAzAXuTh4SEUCsGERSAQYGCNjY3Dhg3z8vJqbGyET6mystLZ2bmystLCwsLc3JzFYpFIpPLy8qamJiKRCEsAlJeXk0gkhUJBIpFAkYI33N7eftiwYU5OTm5ubi4uLgQCYeLEiRAHIRaLpVIpLCbfxyn9KXwgFovEQm4HmUQikdvofF57/ZUt+HGrIwurqUKJRCQR8WgUMolEplDpHKFIJBJyaC2UtjYah8OktjRWX99qZ7Hy1NvKNqFELBJLJBIOhyMUCkGLPHv2bGtr68fzgUAgsLS0zMnJcXV1BZuPm5vb8+fPJRLJjBkzXrx4AdZAlUo1e/ZsFxcXd3f3urq6gICA4uLiFStWuLq6Ojg4NDU19fT0wAUzGIzp06fb2Njk5OQoFArtewQfBoFASElJgZn7s2fPJk6cmJWV5ePjA/rBokWLcDicnZ0d2IgMDQ3BxwB2fzs7u7y8PPCnKZXKqVOnJicnBwYGPnz4UCqV+vr63rp1CxUEMK1wdXW9f/8+giDu7u4XLlxgsVhOTk4pKSkzZ84EPgBb2bVr13p7e8Hcn5GRERgYmJCQIBaLfX19ExISNBoNlUolkUhMJtPLy+v06dNsNpvJZPr4+Jw6dYrNZjc3N8ObN2XKlLt37y5evDgmJobL5RYXF+fl5eXl5TU3N0+dOhUcy1QqlcVi+fr6Xrly5fDhw7a2tqhWAYx179490A+2bdtWXV3t5+d36tQp2HP58uVVq1Zp8wG8lFu3brWxsbl06RKqmQmFQgRBFi5cCPacxYsXnz59esOGDXv37gUOCAkJ+fnnn2F7z549NjY2bm5u2vqBm5ubpaXl+fPnEQSh0WgkEun9+/dFRUV5eXlFRUXoRm1tLYlEAss4giDffffdihUrwGheVVVVV1dHoVCYTOayZcu+++47BEFkMll4ePjJkyePHj2qp6cHBrctW7YcP3784MGD3377rfalwVvdxzmM2ou2bNmycOFCgUCwdevWbdu2afMBqGJABhEREatXr4YpglKp3LlzZ2hoKCp5WSyWXC4/cODAnDlz4H1gsVgXL17E4XDh4eGdnZ3w1TCZTB6Pd+DAAX9/fz6fv3fv3tDQ0MuXLy9ZsuTKlSvAB8nJyba2tng83s7ODvwK4GOAtxePx2/duhW0W41Gc/Xq1SVLlly9enX+/PkqlSo6Ohq4AWhVqVTGxcVt2LAhOTl5+PDh3377LYfDOX/+/Jo1a1JSUoA5wLbO4XCOHz8OysrNmzfHjx8P9qLLly+j+sHt27enT5/+7t07e3t7EMpTp04tLy8H6xC4x3Jycuzs7Ozs7IyMjKytrY2NjV1cXExMTPz9/eE7BUs9OJMZDEZCQoKDg0NbWxuTybx165a9vT3EaFAoFARBXr586enpmZOT4+bmxufzq6qq8vPz8/Lyampqbt++7eHhAfPF7u7ugoKC4cOHu36Au7s7Ho+3t7cHA0BlZSWEroC9aO7cubm5uVZWVg0NDeAnANNTQUGBjY1NfX09g8F48uSJlZVVa2trfX395MmT6XR6WVmZra0tn89/8eKFjY2NWCxuaGgA57ZKpdJoNA0NDT4+PhCFyOfzm5ubGxsbS0pKSktLk5KSjI2Ns7Ozi4uLy8rKmpqaUHepTCarrq62tbV1cXFpamr6Xb/XgHwglsokvPa8yKVuDnZ4W8LsY8/uhDtaDNMZZYh3/Cm9g8NjF574xtHOysrc1HTmsTc0rpD/dL87wdrAd9fezW7ujlYmun/T+crImrAzicSRdrOZ9NjYWBqN1t3dLRaLo6OjIYLqY/hAKpU2NjZ6eHjk5+e7urqWl5fTaDQHB4eysrLe3l4ikejo6FhQUKBSqSgUSlFRESiYjY2NtbW1TU1N6J6GhgYwjovFYg8Pj8zMTA6H4+bm9urVKzAiQS2n4OBgGxsbsBfhcLjPPvvs3bt33t7eL168mDhxIoQJUSgUIpFYXl7e2NjY2tqKw+HAxwBKd3NzM7hA4YNxdnbOysqaNGlSenr6/Pnzk5KSAgMDU1NTUYOSRqOZMGECiFdPT0/QHnx8fIAPbt26BRIzMTExKCjo8ePHixYtiomJUalUvr6+oATMmDEjPj5eo9GAMxmHw33xxReGhoZ4PF5729ra+uHDhwKBICgoKCUl5Ztvvrl58+b27dttbGzAMTtu3Li4uDggSDBhBwYGRkVFwaPx8fGJjIycP3/+L7/8wuPxOBxOH/0gNjYWQZCAgIDY2NjQ0NDDhw+jQlOj0SxZsmTfvn0CgWD+/PloKBEI0JCQkJMnT8pksiVLlly6dGn9+vX9+YBOp9fU1Lx79w6Ee2Bg4OrVq+vq6tA9crn8119/tba2dnBwcHJygssB/nB1dXV0dMTj8VFRUWq1GkGQtWvXhoWFwSl+/PFHVAXZtGnT999/jyDIgQMHdu3aJRQKd+7cuW/fviNHjkRGRu7fv3/nzp0HDx5cs2aN9qWdOHFCV1d37969fZzDA9qLTp06BZpBeHg4OHilUun+/ftRMlAoFAcOHFi7dq12qCLMUg8fPhwYGMhmsy9evIjH47ds2cJkMqlUKkQD9/b23rp1C4/Hg70INJJNmzbFxcUtW7YsLi5u2rRpCIIAC75//76yspLFYu3fv9/X1xdCdCBIDMwdog/O5Pnz59+5cyc4ODg5OTkkJOTatWsQbtTb23vv3r1FixYJBIKrV68uW7bs7t27GzduTExMDAwMTEpK+vrrr3t7eyUSSVdXV1xcnK+vb1NTk0gkSkhIGNBeBPqBUCgsKCiorq4+f/788OHD3d3dgaFFH7Tt+vr60tJSMIyUlpY2Nzdfv34dnBB3796dNGmSWq0uKChA3SHDhg2DjwLdtrGxmTt3bldXV1JSUnBw8LNnz3x8fIqLi83MzICKbG1t/fz86HQ63Ifu7u5Xr15ZW1sXFBS8e/cuPz+/vLz86tWrBAJBKBRCAbiGhob6+vq0tDQ8Hs/hcAoKCggEAkxSJRIJuI7Ly8uHDx8OA4MQD6lU2tXV9eTJk4kTJ+bm5trb20skktraWhwOJxKJqqurHRwciESiVCrt7u6urq4eO3YsWFbA79ja2mptbW1vb29ra2tgYEAgEOzs7FxdXcHzLBKJFApFfX29o6NjfX19WVmZo6Nja2vr0IajgfhAIpMLmNSMn+b8cifr2btXFyKuVTRWZh4NMl97Pq+qQypitz054L37dnF5VcJ6U8NpEa/aBHJ+29N9PqP0jFZfKapraMw+Gmi2+uzr8jaRlE6jX7hw/vDhw83NzVwut729/bfffmtra/sYPgD73dSpU9++fSsSiezt7dPT0wMDAyHkFPxLbm5u79696+rqmjZtmrOzMxA4RCDg8XgXFxfYg8fjy8vLYdru7u7+6NEjHo/n6ur66tUr0BsAYLi0sbFJSkpisVjAATNmzMjIyJg2bdrLly/VarVCoeju7obIV7Ap3blzh8/ng70I5sKiD84DV1fXhw8ffv3110+ePPHx8Xn06JG3t3diYqK2ycjT0xP4YOLEiZcuXWKz2dr6gUajaW1tVSqVs2bNunHjxuzZs5OTk4EzgA86OjqAgdra2ohEIpfL9fT0RP3J3t7eJ0+eZDKZRCKxs7NzxYoVR48e7ezsnD59enx8/Lx583799Vcw1nt5ecXExKCSDkGQmTNnnjlzBgwUs2bNunfv3uLFi6Ojo9VqNZfLBW0gIiJCIBAEBATs27evs7Nz6dKl58+fX7t2LRrzA0IzJCRk3759IpFo3rx5R44cQW3Qmzdv3rVrl1gsXr16dXh4uFKpXLx4cX8+2L9/P8xxLCwsLC0t9fX1QS2zsrJydnbG4/ExMTFisRjm+9XV1SwWa+HChdqOhKqqKrDjIQiyatUqkPsIgqxZs2bdunWw/e2338Lcv7Gxsb29fdu2bSEhIQwGA0Tkpk2bdu/effDgwZUrV2rzwZkzZz777LNNmzZp28cGsxedPHkSwof27NkDk/3Tp09rk0FERERoaChMcrXzDBAEiY6OBkEfFhbGYDBoNJpCoUDDeCQSCZPJ5HK5e/funTp1Ko/HO3z48Jo1ay5durR69eqLFy+GhITAhB1BkCtXrixduhRBkPPnz0+ZMkUkEsHby2KxtM8YExMzd+7c+Pj4+fPn3759Ozg4+Pbt215eXmB8a2trI5FIV65c8fLyAkeaUCi8cuXKrFmzUlJSJk6c2Nvbq1ars7OzTUxMDAwMXF1dd+zYkZ2dPZi9aMaMGRUVFRAFYGNj4+npWV5eXlpaCp8V3O03b96gghuHw61cufLZs2ceHh4Igjx+/BiPxyuVSj6fTyQSmUzm7du3UX9yQkKCvb09+F1YLNbr168nTZpEpVJBS3j27BkOhwMl8u7du3Z2dtp+iJKSkv76gYODg0KhgLjz0tLSwMDA/Px8Ozs7Lpebn58P4h5BkLKyMk9PT7lcXlRUZGNjU1tbi/oP2Gy2Wq2uqKiYOHEixE2JxWLQNlgslkqlevPmjYeHB2zn5eW5u7uDFUj0IcTI1NS0rKwM9WLm5OSYm5ujwUXABw4ODg0NDeXl5Q4ODv8WH4ilcgmf8S5yHsHJHr85rqyWIRUy352ba7ntDoktUcklIh67pa2tvaUh68BUk2kHnrXyOuWCsrOzzaeEPySJupXiigvzLcNuN7EECun1uKv79u07fPhwdHR0dHT0xYsXwb/fZxyD6QdCoRAsX3K53Nra2szM7O3btyjr8vn89vZ2cAyQyWQIVoM5o7Gx8Y0bNyorK/Pz84uLi0E/AAWQTqdPmzbNxsbm1atXfexFCoWCy+VOmDABDPo8Hs/T0zM1NXX69OkpKSlcLpfP5wPt4/F4aOPp6WliYgIRGtbW1m/fvgWCgemMr69vdnb2nDlzkpOTg4KCnj59OmfOnPj4eDAZ9eGDr7/+GubyBgYGr1+/Bv+BRqMBfZNCocycOTMqKgqcxp6enuAYQJONISZdqVT6+/vfvn0bZFwf/wGXy12xYsXt27eXLFmSnJw8f/581C0xc+bMc+fOafPBjBkzzp07J5VKFy9eHBUVBcL6/PnzK1asiI6OlkqlkyZNAim/ePFiAwODe/fuKZVK4BiVSiXWCueXSCRgL4qJiUHtRRKJRCAQrF+//tKlS2vXrj1x4gQoQ9r+A+ADEMokEik4OBgsNr/88sumTZtWr14NFA4WFQRBtm7dCofv2LFj9OjRjo6OEK9y+fJluDSNRrNly5bw8HC4dd9+++3GjRvZbDa4cHfu3KnRaM6dO2dqajpixAhLS0sLCwvocM+ePeHh4fv27fvhhx9QqoMpy7p167Zs2aKtH8BrBnFEs2fPZjKZmzdv/uGHH86cOTNv3jw2m71r1y7QD2g0Go1GU6lUXV1dR44c+f7775VKJYIgFy9eXLdunVwuh28bQZBff/01MDCQyWSCGxPmiWj2GQwG9JVvvvlGpVKp1erjx4+vWLHi0qVL8+fP5/F4qMXszJkz4CWOi4sbMWIEqI/W1tabNm0CPzk4D6KiokJDQ+/fv7948eJr166tXLkyKSkJIizVajW4QEeMGAHK9IIFC0CsL1y4MD4+fu7cuT09PSBfOjo6yGRyfn5+a2srmGJoNBqTybxw4YK2P9nDw4NCoRQUFFRVVV28eBF81HZ2dsuWLVOr1TApTkxMdHBwgFi469evf/3111lZWc7Ozmw2+9atW35+fvCeKxQKcF34+fkB36D+ZPAfyGSy1NTUpUuXpqSkzJkzByJQwHv/9u1bBwcHmNjBegDJycngPwD9oLKy8saNG5aWlkQikUqldnd3v3nzxsXFpaysbNiwYcHBwYWFhZ6eno2NjUwmMyMjw9TUVC6Xv3v3DvUfVFVVAR+A8YfL5RYVFeHxeJQPmEymWq2uqqoyMTERCARNTU2Ojo6NjY2obAQ+AObo6uoCamlqarKxsdEONpXJZFVVVTCX0j78U/hAJBKLhEIevaWx/tmvc9zcHTberiW+jp5nte0OmS3tVnRyOojp+3zGO9hZGet9NfloHlOslPNLz86xCDj2miZUyjjvouaM25LQyJD2KJkdHefP/1M/YLPZaEj1R/KBSCQCVYBIJJqbm2dnZyMIAmFFEyZMKCgogDA7yEfz8/OztbV1cHCAgDwjIyM7OzsXFxdzc/Oqqio0uKizsxNsPuhcHr0XCoXCy8sLXqO3b99KpVJ3d3dg6ZycnNmzZ2dlZYH5Aow8arXa3d399u3bqL0I+gRzp5+f382bN0F38/b2hm0ejwdqB4xcmw+mT58eGxtLp9M7Ojp6e3u9vb2BD4Cl5s+ff+/evdDQ0GvXrnV3d8+dOxf0jE6tHGaw2Jw7dw6SdyDTDRWFQqGwp6eHSqUGBQWdPn1aKpX6+/sfO3aMzWaz2Ww/P78LFy5AS+gzKCjowoULGzdujI6O1mg0MIHdunWriYlJamrqgQMHIP8Aj8ePHDny5MmT0ACCjrQDYaFDOp3e1NQEBlDYKRQKu7u7GQzGokWLdu/eDe6ExYsXb9++HYY0d+5c0BWYTCaEbB44cKC7uzs0NPSXX35RKpVbtmw5ePCgQCCAT0suly9dunTjxo1KpfK7777bsGEDagnRzrWGmFE2m71t27YjR45ER0fj8fhDhw5BiBEYarZs2bJy5cq6urqVK1du374dJgebNm1at24dh8NBJ1m9vb1Hjx4NCwuDh45er1AoVCqVarV6+/btoDrs2bMHrDcjR47E4/Hh4eFwCLijZTLZTz/9FBgYSCaTgflaWlo2bNgQEhICOSKgJEGIqkqlQnPKoqKilixZgqZfnD17dsWKFefOnVuyZIlarT506ND3339/+fLlkJCQBw8egMhWqVRHjx4NCgqSSqUXL16cPHkyepeYTCZcGoIg165dmzZtmlQq7enpOX/+PGyrVKqoqKhZs2YhCKJUKmNiYiZNmlRfX3/o0CHYKZPJzpw5ExgYCL5usVjM4/EEAkFqaqq9vf3OnTtTU1O//vpr4PukpCQvLy+Qwo8ePfrss88gncrJycnMzGzChAlsNhuywCDAV61WJycnu7q6onlwU6dOffPmzbBhw3A43Ny5c9lsNnwLarX6+fPnMLmGyLrMzExnZ2eYPAmFQrlcDoasyZMn02g0SEQgk8lMJvP+/fvABz09PaWlpTY2NlZWVoaGhpAuBwYlIyOjMWPGWFtb+/v79/b2FhUV2dvbp6Wl2dnZUalUtVpdUlICubF4PN7b27urqwv0A/AfgCrDZrOhVAyCIBUVFZaWltr6AYIgdXV13t7eYrG4oKAA/BkgTOBWgGVJKBS2tLTAr2QyGbgElXXwgkFm3L/rT5bI5HwGNWPf0nM5NeUFr6LWufySVJ596huzNdH5Ne08dnvGL64zw688fZGTtHvSaJ8fk6rbRVxK1oGpBj4771e1i8XsknNzTEKjcsrIfJFMKqPTaL/99huot4MR1BB8AAEt3t7eBgYGeXl5dDq9paWloaHB2Nj47du3cOUQcmpubp6ent7W1mZmZgZRyampqVVVVUZGRi9fvtS2Cw0Wb9rW1ubq6pqbmztjxoykpKS5c+c+fPhQpVL5+fklJyc7OjpmZmYKhUJ/f//MzMyFCxempaW5ubndunULtRdBrDpMDz08PMAFDTpHZmYmgiC9vb2TJk2KjY0FhVSlUrm6ut6+fVuj0UCieVdXFwTmOjk53bx5E0EQDocTHBx85cqVnp4ePp8/e/bsq1evkkikuro6EomEeiwgiQxc1giCwEvj4+ODWoHg41yyZMnNmzcXLVqUlJS0fPlyyM/A4/F///vfwQAlFosFAsHixYuvX7++cePG/fv3d3R0gGukra2tsrKyqKgIZrUtLS0QazRp0qTTp0/LZLLly5fHxsaGhYUdO3asz/vXP95ULBYLhcJ169adP39+586dhw4d6uzs/PbbbyHVCJJIjh07BqIQh8OdPHkShODixYt37NgBVotdu3bhcLiYmBiRSLRhw4bTp0/v27fvxIkT69at+/7770UfLCEtLS0wj6bRaGBLwePxBw4c6Ozs5HA4DAYjIiLC3t7+0KFDMCukUqm//PKLk5NTeHg4KB/h4eERERFHjx7dunWr6IPzA/RUOp3ev8SNRCLZs2cPKB9sNnvHjh0//fTTiRMngoODwZSHkoparb527ZqhoSGkmKKBCebm5sOGDdu0aRNkIZw6deqbb76B0AAAh8NBg03BNf3LL7+sX7/+5s2b4IxZvny5VCq9cOFCaGjoyZMnp06dqlQqT58+vX79+uvXr69fv/706dNff/01epcgbFosFisUimPHjoEHuKurKzIyEsQ9giA3b9708/ODsG8GgxEbG+vk5LR06VIggCtXrqxZs+bOnTsLFy7kcDgajSYrKwuHwy1ZsgSqkkRHR7u4uEDc+fnz552cnHg8XldX15UrVyZNmtTe3t7c3Eyn0+Pi4iZNmsRmswUCAZyxq6tLo9E8evTob3/7G5ibjIyMpk+fnpWVRSAQYORwS2H8CQkJ3t7eMHfs7e3NyMggEAjAB3CvUlNTFy5cCIp7bm7uZ599ZmNjg8fjTUxMCAQC1NTi8XiQZHrjxg1nZ2cikchgMBITE83MzODlp1AonZ2dL168MDQ0NDU1tbKygnhZ0Ify8/NB3VGpVGVlZZ999pmVlRUOh4OQXMgSgDCt7OxsDw8PiUQCxABBwLC6/YsXLwgEQl5eXktLS0tLi0gkgvyGly9fmpqa1tfXv3371sDAoK6uLj8/HwLlqVTqfy7eVCLrFHHak7dZ21ha42xdnHfebKay6Gk7rMdZWNmFXC6kNCdts7O1tSPYzw2YbGhma7/g9Kv7P090Mh1tOBa/MLqoncl6vJtgPc7SZm5UHpUjVXRKIb5oiHEM4U/mcDjTpk17/vw5nU6fPHkyeISsra0NDAwqKyu7urpEH/jA09OzrKwMIvcLCwunT59eVFS0cOFCAwMDSGke+kZIJJKAgIDMzEylUgkxSCkpKZATyGQyAwICDA0NCwsLFy9enJiY2NPTw2AwgoKC+sQXWVtb5+XlQU2I+/fvgwFnzpw5d+/eBduUWCzmcDhBQUEQvdrV1QUxSGq1Gg2UWr58uY2NjYGBwePHjzUazYIFC2JjYyHzTqFQ8Hi8kJAQmHrAGR8/fgw5zCEhIVeuXEGNUb29vcHBwdeuXYP5Y29v7/Lly8+dO9fd3T1nzpw7d+6sWrXq9OnTDAaDwWAEBgZCYhparAJsPuvXr7ezs0OvDmZwqGoCAnrJkiVxcXE7duz49ddfQTVZunTpxYsXhw7SV6vVmzZt2r9/f1dXl1QqBdUH5CYMaenSpb/++qtGo+no6GhqauJwOHK5XKPRrFu3bv/+/RqNprOzk8lkQuDErl27fvzxR4VCIZfL9+zZA4kC2s/l7NmzYELB4XCHDh0C8QT3XKlUgowGk05cXByBQIA2u3btioqKOnfu3MaNGyEWaPv27eHh4eilDVgVTq1WHzt2bN26dVKpNC4uzsbGZvfu3XK5/ODBg+Cu0D4EYt4gqwCNL4Tr3bdvH2QhwFcNOc/aSeympqbr16+HpxYTE7NixQq4nDNnzixdulQkEsEziouLMzMz2759e2Ji4qJFi2AicuXKFUgU0O4TTEY3btxYsGABxDvcvHlzwYIF8JGCqL18+fL69etfvXpla2u7Zs0aBoNx+fLlTZs2ZWZmzpkzRyAQ9PT0XL58efHixb29vRwOp6mpiUqlIgiSk5NjZmYGsZiQn2xgYLBp06Znz57NmjVLIBCAMUepVPb09KSnp4Mr2NTU1N/fHyxg6enpvr6+kLAZHx8/e/bs7OzsKVOm9Pb2oiKvu7v72bNn/v7+oByIRKKenp6srCxfX1/gA5VK9erVq6lTp/L5/Ddv3kyZMiUnJ2fixIkkEgmsQ15eXsDoqP9g5syZNBqtq6sLQZCCggIvLy/QMDQazbt376ZOnUqn01+9ejVmzBi4mTY2NvYfEBAQ0NXVVVJS4ubmVldXR6PRsrKyPDw8OBxOT08PJDN7eXlRKJTu7u6KigofH5+qqioHBwfoZNy4caNGjYJ4MF9fX7FYTKFQHBwcLC0tQUdBN6ysrMaMGWNlZeXl5YV6Gj4Jg+YfCLmM1pZmIpHYTGYIJGKRmMdsayE1N1MYXKGIz25tIRGJREobtZXSQm6lc1gdLS2UVgqZ1ErnCoRiPotKITU3U+hcgVAkFot+1241hH4ALgQw5rS0tBA/gEKhCAQC7Rko6ktob2+H0lR8Ph/KJ6DJB0MD6BesT9q16jo7O1tbW6EfdD/kMVAoFBKJRNQC6ActLS2QtwXdotvQGxqhKNYqeIfeitbWVrhAKKsH50WfbmdnZ3t7Oyo4iEQiqMnQUjvAHzrXLl2HNoD9NBqNz+cDadHpdDSfAzWwQCyj9rkA6Jcm0iqQR6VSORwOOHtg1jx0SjsoZKA1y+VyGo0GNAB1kJRKJVpCDkaCOurpdDpaoQF+kslkVCqVyWSitecgsVN75DAeuBwWi6VUKvvMPGAeAMNoamqCtFXYAzvBJAVRPb97aXAHUEMZHM5kMlFzvzYGrNYHafloLrRcLudyudpX1NTURCaT0cJEYGmEu8HhcNrb20FEojHycD9hP7pTm4TAIA78BNNtsViMbsNQ4cC2tjYQ9O3t7UqlEvawWCxoCfMztPpk54dKcGw2m0QigbUWwiIpFAq8A21tbdpzWKlUKhQK0WbahYnA0qBUKkUfSk/2L0LHZrO1faegGUNBCNGHOn3QAA6Hv9AtCBDt3qBeCKiA/bvicrktLS1g/IBL6wMymSz+kK4Bj1UikYAxAPYTicSWlha4RahPtLm5GQ6Hwi1oVyKRSCAQaO/vvwHxpkO8n0O8t4Pko0nQsmIyidb/cqlY/M/ss87OfxbklEslkn/NT/tng38mq30EhuADkVYp06ELjmo3A5VQ/KH8cklfUQAAIABJREFU3MeQgWjI2tRoP33a9P+M0TEM1tXH/ApdoY7iwRpoN/vdE2n/CxvahaZhptx/e8CaqX3OAmZQ7d4+soR1/0M+ppMB92vvHFC8wq8Dpo/16US7DboHZdmPrJWNHoJ6CESfXjS7T3vJQEWhB6zIPeCB8JjkWrWpB+sNpjtoV/J+5aahK7Q9uke78/4lEwY74+82HrBb2B7s2P5j7lNqFP6FDbFWWen+x4qHLFKN/isepKgq+qtcqxiq9jY00/5psK46PxjEBvtVu9m/gSHyk/9HMTQfYMCAAQOG/25gfIABAwYMGEQijA8wYMCAAQPgz8cH8sGXzOzz09At+1vchvBGDGiC/29FH0P/YGf/GON+f6BH/Rcv5COdBH9Ibx95RjQpQdvaPvS/KPo7A4aw4Pff86m+hMHwn+pH9MEN8B/pqk+3Q5v4B2zwuz0M1s/v9oZhMPxp+ACks1Ao1F4WrQ+0V9MUfVhArb+gh5+0V9Pss44N2ptIJIKYATTQSC6XQ2TFRzqo/z2ItVbHRDcg2BGKCqDxQnQ6vf+F9F8cVJs2FApFR0cHNO6zkOSnDhINSer/64BE1YeEtNtAxKf2CmudH7HszH8FYrEYjV9CNyDKiMlkdnR0oDeZyWSy2Wx0YGiYE6SJiLVW6Ouzvqb22jLQHuKaOjs7ZTKZ9r+dAy2f+ZFXoZ2i3AcD+m+1T6fdACo9MBiMwZZL+xj08dOK/nWxTO1hozsHbKDdG9pA1I8YxFqLXMI2LP7aJ1oJw0fiT8MH8MihOA8ULNIOHIIIkKCgoBcvXqhUKkg1gCpRLBZLJBKhMkgikUilUl9fXxwOB6sqQoww5Bagte2kUmlAQEBaWppSqQwKCkpOToaQm46OjunTp798+fJjVt8c/GqlcrlMKhl0jVyVSjVjxozExESNRgOZcVCniEajQekLSN/v7e1dtGiRlZUVeiEODg7GxsYpKSl9aqsxGAx00TEmk7l69WoosJGWljZ0isAQgNoS2iUutM+IUk5/gOTt04bFYkF1a3StLrTlpw5MLJHKQP0b9B6LRCKRRqPZtm3brl27NBrNDz/8AEWzoZTT9u3bf/nlF7gzCIKEh4evXr0aVrJtbm6GxVIQBNm9e/fGjRshOYBGo0kkkn379m3atAkS8SIiIiAzAL1dBw8eDAkJgeWVOjs7jx07BqvEQLcoAw0YHDWYdIYUZahN1P8paN/MPmhvb+/TgMVinT59OigoSHsnWjvoo+681hrLLBYLAls1Gs3t27cDAgK0F9FUq9X379+fMWMGFO9MTEycPn06ZNhoB95AfjKCICkpKVOmTOnu7kYXUYc2kHg8efLkzs5OBEGys7NnzZpVUFAwe/ZsDocDy5xh+Hj8CfgAgqkh10wqlVpZWRUVFSEIAtUF0BSEtra2wsJCAoHw6NEjBoMhEons7Oxyc3NDQkLQlXNEH2ru43C43377raKiIj8/H2qaW1hYPHv2DM1hhhj8qVOnvn79WiQSBQYGFhQUIAgyb968tLS0AXWOj4VE2inm0TsYTC5fNFAn8GZ7eHjcuXMHNmCZzJCQEDwen5SUhKabQeZdREQEVG2DTEhHR8crV670qa22bNkyKKkI5RXj4+Ohwp12GsEnAabJAQEB+/fvV6lUfeSUWq3euXOn9SC4ceOGWq1Wq9W7d++2tbWFZXIdHR1HjBihr6/v6OgIe/B4fGxs7CfTlUQm4jE6KM3NJHIrnSMQSweMeYZaY+vWrdu4cSPyoQI2m80+ePAgHo8/ePAgyHQI7Nu9e7eJiYmpqamBgYGdnd2pU6dAV9uyZcvy5csha/f48eOnT58+fPhwWFjYtWvXjh07dvDgQShd19nZKZfLZTLZvn37DAwMTExMDA0Njx07du7cOfh3zJgxOBwOGAjUiMGEOMoZAJlMplKp9u7dO2vWLGCRPk/h3r17gz2FsLAwtVoNC4Shj8DQ0HDYsGHoI7C1tV2/fv3HPwJIXgsKCtJoNJDeDzVI4uLiPD09oVq7SCSCCg3x8fHu7u5QvCghIcHNza2npweWqkfbQO0vuVz+4MEDNzc36HbRokW9vb1oGY+MjAwnJ6fe3t7u7u6EhARra2sajXbp0qXx48cDSX/S6wM6olRrfYu/FP40fGBlZVVeXt7d3W1nZ/fkyZOOjg6o/lZZWQlCPDAw0MXFBZaWdnR0fPnypYuLS0ZGBiy5nJ6eDkIc5v5QANnd3R2tWfjFF1/A8shwUrlc3tPTA6YhDodTWlpaV1cHC9ehK2j/excqEfJY2YcnOYTufVjF6VX2me+JxWIqlUqj0dzd3S9evKhSqSZPnjx27FhHR8fU1FQ+n0+j0YACYYoaGBgIa26glRdHjhwJ+gT6Qms0Gl9f31OnTqFlaqRSKeQzQ2rMp14D3MklS5bEx8dv3br1+PHjUF4NbQDpNv0TcwBMJhOywWk0Wnl5OaT1V1dX+/v7f/fdd9XV1eieT6YrsbhT0VmXtm/FJBzOysx69vbYfI5KIRP3bfVPS9eKFSvWrFnT2dkZHh4+atQoR0fHo0ePQjEAsLmBErBhw4aOjo7Vq1evX7+eSqWy2eyff/45IiLi4MGDq1atgvJKFRUVFAolLCwsJCSkpaWFw+H8/PPP8+bNA61CLBafOHFi06ZNYrF49+7dYWFhFy5cCAsLE4vFe/bsWb58OaSPSSQSqF0xmBDXzouWyWRKpfLIkSM//PDDtWvXli1bBsYf7afAYrEGewqQd8Zms9ESsNXV1bt37544cSL6CEpLS2FUH3n7EQSJjY2dOHEilAE+e/Ysukinj48P8AEYf6RS6a1btyZOnIgWu54wYQLoAX5+fiqVisvlkslkWP1m1qxZN2/e9PX1TUxMnDBhQlVVFaxuD2teXr9+3dHRUSQSFRQU6OnpGRgYWFlZGRgY6Orqzp8/v/NTnGRisRiKcMDqZh951P8l/An4ACpS2NnZPX36lEqlWltbm5ubw5L3oAGA6aaqqqqgoKC4uLioqKikpGTy5MnDhw83MzMzMzMbOXKkhYVFZWUlFEb9GP0AlA/45KZMmQL1UqytrQkEgpGREVrE9JOvUirvKv1t6STTf+hM2pdZzVZ3yf7lZzEUq8DhcMOHDzc2Ni4oKFi4cOGxY8eqq6uJRCKPx5s8eTIsYUalUsF6FhERUV9fD1dRVVXl5OQEi+Ggln2NRjNlypTIyEjRhzI12i6HT3IhwA0BMjh+/LhQKORyubANGcXw7UHVjZ5BAAUtYOZ49OhRdKFjPT09ExMTlNtgrdBPS7OUq7pr7t2+m3DjHZNZFv/9FKNxCyKektU9/2pJVqvVJ0+exOPxo0aN0tXVvXHjxpEjR2BB5vfv34tEoo0bN27btg1WHFu5cuWePXsiIyNDQ0NpNNrOnTuPHDmyb9++7du3Hz58GPggOjra0dHRysrq888/19fXd3JyOnXq1Pnz583NzU1NTY2NjQ8fPgxlxdrb2+vr62traxsaGmpqauDf+vp6qLAm+lC2ejAhDkYeiUSiVCoVCsWRI0eWLVsG6xIfOXJk+fLlYrEY5WZoNthTAOMMFP5EH4G5uflXX32FPgJYmPrjHwGCIFevXoWVD6BkKSy6oM0HarUalmNKSUnx9vYG7erWrVve3t5qtRqWYNNoNLDkgL29vYWFhY6OztixY0eMGGFoaKijo+Pi4mJtbb1mzZqioiIcDmdiYjJ8+PAVK1bcuXPH0dFRKpUmJCQQCASwXGkPD7S9wVzNcOsoFEp0dPTp06evXbsGsuITXr8/P/4EfEClUpuamqysrKBM0LBhw6CWkUAgsLe3z83NhbVlfH19obipvb09VEJ1c3NLSUmBVROgiplYLFYoFF1dXVOmTHFwcEBXVXR1dTUzMysrK4MSaTKZbNasWQYGBu/evdNoNHZ2dgkJCbD8FoVCweFw6ArJgE9JgRZL+BxG5aVltqGHk8sY/8oHcB9gFUN3d/fLly+DmWvt2rVubm5waUZGRg8fPtRoNKtXr/5/7H13XBTZtu6558wRnRl1RhAkdze5kSQOWRAEFFBUxDEio4goZlEUlaAogiAqIiomDIiCOYw5MeYEikpq6EBnOmfo7qr3x7rU7WmQYWbOffPOO6w/+DXVu3ft2lW11l7rW3t9UGQR6LlxONzIkSNdXV3Nzc1xOJyNjc2lS5dgLYkgSEREBMaKoyfnz5+HWqRfilmDwLtBpVJZLNaMGTO2b9+uUql+/PHHvXv3gnnIycmB4LsuMAAUK/C5paVFF8OARTqY5GfPntXV1Y0ZM2bevHkfP36EqsLgH+iG1H8bXhaJRO1MFqedJ1FqULT24Iypc3/c/USKqH71Q3BNmEzmjBkz4uPjwZLl5OS4uroCl46pqWl6ejqCIAUFBUOGDMnJySkqKho8eLCVldXAgQM3bdqUmZm5evXqjIwMsAdQ/GD58uUDBw6cNWsWiUTatGlTfHw8lUpNSEiIjIyE6Edpaam9vT0wnkMlbUdHR2dnZxwOp1dDuxf8AMOls7OzZ8yYIRaLd+/ePWvWLJVKtXXr1lmzZkHgXhcbIJFIUI5Q7zMUSnn//n11dfXTp08/fvy4atUqNze3Dx8+PH/+HLh5dSNUuhuSexRdeyCVSiH7A0XRw4cPY/YAQZDDhw+PHTv2woULUPhaKBQClc2ZM2ciIiKg3AuHw2lubqbRaABpHDlyxNPTs7y8fNSoUbW1tVDknMvlMhiM0tJSLy+vu3fvmpqaurm5QW9EIhGW+djY4OFpbGzsEWrGHBc+n8/lct+8eQMPdr89+GukR3sAVVDGjBmDw+EGDBhw79695uZmPB7/4sULiIfY29uDPeDxeDgc7vLly1BLBIfDPX78ePTo0Y8fPx41atSjR4+gAKRQKIRyQ2/evHny5AlQI2AfPn/+3NTU1N7eLpFIyGQyDoeD8tpEIhGob6AwL1Dc6NoDIAHvW4kkkUii1LSV/+Q4L7PiZXd7IBAIOjo6UBT18fEBe9De3v727dvHjx+DC//mzRsWiwWVF93c3LKysj58+ODo6Lhz507gg3v58iVEtzgcDqzWwT/Yvn07VpRbVzgcjkQigbqSvQiLxUIQJDk5mUAg7Nu3D2r0BwcHb9myBbCKhIQEAoFQVlaGgQd4PN7Y2NjU1BSKl2GfMQgB8ANQjra2ttbW1jY2NsAf6+joiOEHoAGhys1vz7BILBaLxUKhAkHeHsnIzd1xh6X5tTkQCgQCAGkWL14cHx+vUqkEAsGnT59gkh8/fgwcLBBanDt37sKFC9Vq9fz58xMTE7OysjIzMzdv3qxrD2Qy2YYNGzIzM/Py8oYMGZKens5isVasWLF58+acnJyZM2fC49ra2gqEfbW1tXPmzAkKCqqtra2trZ09ezYUsv7t90Qo1Gq1x44dIxAIEH1CUTQzMxO4MJVK5Z49ewgEwvLly7Va7cmTJ+EuYKSYegSZGzZsuHHjBoFAIBKJMP92dnaWlpZAj+ro6GhnZ4fhB6AuoZDcl+4CZg8QBIGKvzDPx44dw/ADBEGOHj0aFhZ269YtIMZZvHjxrVu3Bg4cCCVRAQSWSCRqtbq8vDwqKkoikVy9ejU0NBQAj6ioqPb2dlgfYMQGfD4faDttbGwwKjQsXgQLwZs3b+Lx+NDQUL04JPgNtbW1paWlwDTX2NjYbw/+SunFPyCTyR8+fMDj8RDwsbOzq66uBrJMCwsLXXtw9epVsVgMqvzu3buenp737t3z8PAAUkzAiMLCwnA4HDDI29vbm5mZYY4CFBR88eIFBNaJRCLYAwcHh/LyciiR1tbWZmtri9kDsVisUCj8/f2/++67Bw8e9BxEEkv/e7eDTCoWiURimbL1xDyHuB7tAeAHdDrdz8/PxMTkyZMns2bNsrW1hRG6urpaWFhcvnwZLBMGHnzzzTc///zzunXrzM3NCQQCtEF1OLwCAgIOHTqk0WhoNBpwRAOdOp1O5/F4UGf0SzFrEEh2Al8NKuKhKBoeHr5t2zaATKFOHGADAB6wWKzAwMDVq1eD3zB27NiVK1dCRBtrBsbG29t7/vz5UN03LCwsNTUVaqUBoxmCICtWrBg6dOju3bt186Z0Zq0roagro0gkUXXIXx8uOXzyzDtlp36SCYYfLFmy5Lvvvjty5EhhYaGlpSU2yTgcbsuWLUCuuWTJkgULFqhUqvnz58+ZMwfqAC5fvlzXHkARbIFAkJqampKSsmPHjuzs7K1btyYlJW3fvh1QZa1WW1hYaG1tDRTQxsbG3333HVBA4/F4yG7qy5sCAaX6+noolgdnh8LUUGkOiolicScWi5Wamurv7w93YcOGDb6+vnAX4FrAjVu2bJmrq2t9ff3Hjx/XrVsXFhbG4XAaGhow+kwEQcrLywcPHgzsND2ODexBQECARqPZv39/TEwMhAeLi4ux/CLMHpw/f97d3Z1GowkEgtOnT7u6unK5XCwjCEGQGzduREREwPPJ4XA+f/4MS6XTp09PmTJFo9EAflBRUWFgYDBv3rxbt245Ozvz+fyTJ08SiUQ6nY7Fi6C+qbu7O5/PP3funKenJxRNEnYByHV1dRkZGcBe3t7e/u7du0OHDvXbg79MerEHkDxqZ2f3/PlzqVRqbW0NhMkBAQHDhg378OEDqGZvb28rKyvAk42NjV+8eAFk2WAPMHwVKqQC+3FTU5O1tXVxcTFELaqrqz9+/AgMaIA53717VygUenl5fffdd5aWlgQCwcjIaOjQoRjyDPZg7Nixf/vb337++eee3hMRn01rhTAJicZqF4gk8i/ZA138YODAgceOHVOpVJ6enunp6TU1Nb/88subN28cHR2PHDmC8SjAVy4uLmVlZWKx2NnZuaSkZMyYMfv27UN1mM78/PzKysoWL16MZRnBynH48OHl5eUoilIolC/FrEEgdKPLYaBrD4S/pjeAzyiKRkVFZWVlQYw4OjoanAkoIQ5bOlAUzc7OBgDQ1tbW3d39wIEDwi4EAtNEKSkpf/vb33Q5mXVnTdjOpLU2NTY2NjaR21jtQrFUqZS8PFJy+OTZWqVaJdGHEzH8YOjQocuXL5fJZImJidHR0YCs1tbWRkdHJyQkwLAXLVq0Zs2a48ePDxkyZOjQoS4uLkePHl2/fr0ufgAqOCUlJTo6mk6ngzpesWLF0qVLt2/fHhMTA12tXLkyICCgrq6urq5u3rx548aNA+T26dOndXV1fQdydOM2uvZA7yv4DAmp48aNgzEUFBSEh4ejKKpSqQAKgjQeOzs7Q0NDKysrd3f35ORkQFbVajUWHUIQ5Ny5c//85z/Hjh37JdMFqUQhISEnT54EdhpQ3/7+/pj+xexBVVWVLn4wevRoiNZC4lB7e/uHDx9evnwJZVPLysr8/f2ZTGZLS0t9ff3z58/b29sfPnwIxMgeHh58Ph8SjYQ9xYvUavW1a9cgmlRZWTlq1ChsPFDJOC8vLy0tLTs7e/fu3Tt37gRG9P80YyD8t7AHkF9ka2sL9sDDwwP2HwAZBYVCgXybz58/f/z40cLCorS0FBA2JycnzB7w+XyI5ygUCrVa7ePjA2gBBCswVsV3794ByZ9EIhk5cuSZM2eio6Nv3rxJJBKPHz/OYrHwePzJkye1Wq1uUOvz588eHh7Xrl3T9w9EIrFUQbmYGuGFx+FwuIC1Z15TpBoN0lb+k2P81qo3bLSjF/wAOAYCAwOxDCI3N7evv/4a+JN1/YNvv/32wIEDGo1m0qRJZWVlsbGxQKwm7CJmCQkJOXfuXERExPbt27EsIx6P98MPP+zevRuWlr+JH+jdMj17oCfgzkdGRubl5YE3M3HixIyMDBRF6XQ6Vuu7ra2tpqamvr7e398/Pj6+rq6OSqXOmjUrJSUFo9ORSCQMBmPSpEmZmZnd/QOJUiN4Vroy2hGHw+GcZ2RW1akQNfPOzoK9+y81IGqFkMfl8rsRH2H4wdKlSyGJyNDQECbZ3d3d0NAwJSUFswfAYblgwYJJkyYBqpGamrpx40Ysv6i4uNjMzGzQoEGWlpaWlpZr165FUXTz5s1Lly7NysqCPQoIguzcuRMwMAsLi+HDh0NGE+wasbCwAAihF/AAgxD07oKuPdATSEhNT0+PiYmBu5CbmwvBJWwXG4fDqaurq6+vX716tYuLy8ePH5uamgoLC0NDQ3XrycMDn5GRERkZ2Yt/cPr06X/+85/Tp08XCAQIgqjV6sLCQl9fXywdtkd7APlFEB1ta2vTarV37twhEAgwOTgcbtCgQQMHDvz+++/hPbWzs4uJiRGLxYAfAH/yrVu3BgwY0Eu86Oeff4Z4Ebin2BsnkUg+fPgA/gEUJIeQbI/X+P+3/NvYA2tra4AN4FYpFAqtVtvR0fHDDz88e/ZMLpd7e3u/efPGzc3Nysrq+fPnKpXK3t7+zp07rq6uDx8+DA4OfvDgQWdnp0KhIJPJRCLxwoULGo2GSCRWVVUBHgjEziAymczR0dHExOTevXs8Hs/T0/PBgwcQO7p165ZEIoHlA7ScNGlSZWWlvGdIWcRnU0nAj9BMZbULxYJ25tuiGKupq0vuNSvlkm4/gURSb2/v48ePoyjq5eWVlZUF2VPANg6kaTwez93dfdOmTTU1Nb6+viYmJrdu3aLRaGFhYTt27IAtsrD6Gz9+fH5+vkqlCgoKysvLE3ZlGQkEAj8/v7179/YxUqEnvdgDeAkBdoZpgWHAAn/OnDnbtm1DEESj0WzcuNHU1NTS0tLCwsLQ0BAyuP7+978PGTLk6NGj4PlpNBqIxfdcgEQkEnKZ1JbGhoaGhiYyjc0XVu9dt3HDhvK3NCbz7tmqG7fvM1RKvZcbXJNFixbB/oOkpKSYmBhYrdfU1MTExCQlJenaA5VKtXLlyiFDhhCJxJycHKlUqlKpVqxYMXv2bAiXrVixIjY29uPHj/Hx8UCQyePxli1bNmfOHCCpl0gkgLTHx8cvXLgwLS0tKiqKyWQ2NTXx+fzk5OTIyEgURXvZfNDjFoRe7AEMMicnB2BnuAvbt28HPrX9+/dPnjwZQZDz589bWVmNGDECKJgsLCwcHBwGDx7897//fenSpRhOptFoTp48GRMTI/xysjWCIMePHw8ODobHj8ViHThwYObMmQAUQ7EA0P7jx4+/dOmSs7Mz2KSysjLQ6efPnw8KCurs7OTxeGQyub6+/t27dzt27Bg3btzZs2ddXV1fvXr16tUrWDMBSn/9+nVXV1cURS9cuEAkEnuMFwm77Fl9fX13TnnAD2pqagA/wFyH/0D597AHXC7Xw8MDvgV2WciU+Pz5s4mJSXV1tVKpdHd3P3/+vJOTU2VlZURExNWrV/38/B4/fhwUFHT+/HkbG5s7d+5otdrW1lbg2AMuTLAHwI9IoVAwPFkikXh5eZ09e7a9vT0kJOTChQuwid/Pz6+ioiIgIADzBkQiEYlEwgpa9CDiruC2TCaRyVUv9k8f62g8zNjUfEbBvc8cjb6qguQK8Egg1GNiYkIkEh0cHJycnL766ivYXjB37lxItXZychowYEBJSQmTyZw6deqJEyfmzZtXUlIChVz4fD7QOIP6BnZMiBcBRyZEn/7ALUNRNCQkBMOTdW+lQCCYMWNGVlaWQqGA9SyCIDNnztywYQObzQ4KCgJWZMCxx40bt3bt2paWljFjxiQlJcFG5YULF7LZbJhSsVgMVTq+WJSmCz9QaVHJq6NroqyHjzAztSLY2uAdp6SeeMFVq/RvDcS+4EQoiq5atWrw4MEwyUQicfDgwZBqiaLoggULVq5cefz4cVNT09WrVzMYDIw4Ze7cubNmzUJRFHYPpKenE4nE5cuXM5lMQJhTU1Nzc3MTExMh24fL5YK7oFKpUlNTp06dCmZDKBSmpqbOnTsXQZBDhw71DuTobkGAu5CZmRkWFtb9Lkil0pycnNjYWKFQiK3N9+zZM378eDabvWHDhoCAABjAmjVrQkJCqFRqSkrKqFGjYKOyv78/iUTCnmoAJHSJcXq4DyIRbLfm8/mnTp2ysbGZNm0aj8dTq9UlJSWRkZFcLrejo2PXrl1+fn4XLlwAarakpCR4W4FB08nJCewBn8+/cuWKk5NTTEyMQCDQaDTw77Rp01gsFhgSpVJZWlpKJBJRFK2qqrKzsxMKhSdOnLCzs9PLLxL2mm8K3up/5p4DXfk3sAfCLiItf39/PbJAHA43bNgw2JJGpVL9/f0NDQ0/fPjAYDACAgJu3rypUqna2toCAwMNDQ1fvXrV2dkJyh3aBwcHGxkZWVpa6nb74sUL2NAAIxk/fnxFRQUka8MGn/Dw8CFDhty/f19381qfFxQiUTujhdRMaiE1N5HpHJ7g10stDELAyDKDg4P37dtHp9NhbRgYGHjy5EkEQYCaDSDuoKCgixcvJiQkFBUVqdVqgUAQERFx+vRprVY7ffr04uJicKciIyN37tzJYDAAEqDT6aGhoQcPHuwZpP0tQRBk6tSp+fn5ej/XarXz58/XNQbCrrBVcnIygBbFxcXgHyQnJ2/ZskWlUqWnp5uYmADsIZPJEhIS8vPzscVpX0vdiURCLoPS2tzc3Nzc2FBf39BEobP54u5VK7Ra7Y4dO4yNjYGPc8WKFQsXLoSZYTAYCxcuXLFiBQR5Vq5cuWzZMqlU2tzczOFwgFVNo9EUFhaamJikpqYiCLJ79247O7sNGzYwGIzU1NRt27YVFxf/9NNPUqlUoVCsXbs2IyOjvLycQCCsWLECVrWbN2+Oi4tDEOTAgQN4PH7FihXgQGB3p5ctCLoPG4IgeXl5sbGx3e8CMFYKu4yBsItYuLS0FIg2YQBHjx6dPn26RCK5fPmypaUlRMA6OzuLiormzp2rm0fXlzpxgEYQCITp06djfG0SiaSzs7O4uDguLu7x48dA0jl9+nSAtclkskqlqqqqAgbNCRMmwP4DAoEwadIkKpWKca4JBAI6nQ4tp0yZotVqHz16ZGFhERzFKNltAAAgAElEQVQcjCDIvXv3gIkTfE3deNFvPzldj2hfWv5/LP8e9kAoFMpkMl2yTEww1kzAheBfuVyOVaPTPQ5reew4qNTGLl46EKwYHGh5vbW/XIc48w/CTSJJV3FVWY/ldUQiEZwCRkKj0XR5ZaFcl6iL9w07CLmAkPkjl8uBPFIsFmMEmdAVsGPq/vAPl7SD6D+2RQATMN5AnKl7XN7FHAnbd+H1gyxSmUxGpVJJJBIMBrKV/kCxAaFQN9cIy+nqoRVACCQSCcYP9O7YJLPZbChFB19BiTq5zgYIsVgMlQTh5xgjJlYLj06n0+l0KFPBYrFoNBqLxYI2EEDDiDOBmxOOC3vdfNAjfgCeR/dicDBCjDITEywHCSPaZDAY0IzFYgGBMPgW2M7q3zX9sOcZAHalUonZD6lUyuPxIL8ZSDqhAVwR6HpdakxIMCOTyUCIjXWuVCqBR7OlpQU86aamJoihAUMnRsMJbf4DMeE/I/829kD4hSLVulF73X1hurHm3o9/qTesjZ5W+l0EnH9M4BRY/oPuAHr0RTDyS+yrHstl93gtfwY3+118lkKdgqbYt1hLPYX7f6H2teTXpJhfKnDdS7FreU8cnJIu0St8rbeZS9ITm+YfvpA+luMGEXfVNMUGgG2N1hvhH6saLe4iTO5+XJcJsjufpe7xL3Wi95VuCEjUjUWyv+r175V/J3vQL/3SL/3SL/970m8P+qVf+qVf+kUo7LcH/dIv/dIv/QLSbw/6pV/6pV/6RSjUtQfiv1QgweD69euQlfHXDqZf+qVf+uU/UCAN7MKFC3/j/KXC5XKZTOa1a9eA/vevHUy/9Eu/9Mt/oAAB9YULF/527f8Bqaqqunr16vXr1//qgfRLv/RLv/zHCejeysrKv7H/UuFwOOAfwP6pv3Yw/dIv/dIv/4HC5XL/2z/4a+NWGH7AYDD68YN+6Zd+6Zf/+/I/+MFfi2v35xf1S7/0S7/8tSLuzzftl37pl37pF2G/PeiXfumXfukXkH570C/90i/90i9C4f9n9qA7f1bPjFp97k3c53rLv9m49zqjfT9jX8qd9r0ZSC+EUN3rjP6vVh7V67z3c/VlJLptvtS+xxLT3Vt2L1naY1d/oFLp7+pN72Dv//6u4el9K+6J7UDvYI9tun/Vl67+pPyreoNK8n++H92u9AqvfomQp/fz6vam27L7D//MJfwb2IMvlbnuXqEayp2Lu+o8YxX//5hJoNFowECgN4DuvYlEopaWll4o0oAqACg2dT/32KbH64WL0vst/MvhcHrsCjvevZkuW7JCoWAwGLq8CLqnI5PJXC4X1ARUfm5ra2PrUCZ0J17uuxHtPksUCoXNZsPpsH97fLhlMhmDwdCt+9/dlkilUgaDAWxl2Ofuc8Vms4EGA5OWlha9a5TJZEwmE4gQsM/du2KxWHBcz8boPRi6mlf3V7oNgG+STqdjDI7yLm4GCoWC3Vl2Fw1y93+FOkWk4bc8Ho/JZOreaN1hcDgc3a44HI4erQKQIrS2tvbSBjspfAXz0L0ZMKnBQd1B6qpLvePdBWspEona29tpNJqwb8r3S6LbT+/N+jIkLpfb2toqk8mAsRweLWBr6N4hj8ej0WgCgeBLZ+Tz+fBD+CAQCIDdSCKRgPLR7aqlpQWjH/9d8m9gD0gk0pe4ZFtbW4HhUiqV8vn8sWPHXrt2DSYCXjAvL6+nT5+iKPq7pkYsFkskEm9v71u3bnV2dra1tTU3N2NnxAwMKG6lUqlWq6OjoysrK4GfGXs4sNdGoVCMGTPm/PnzWq1WqVQGBgZWVlbqMk+JRCKtVjtmzJjy8nI+n693jcDMJRaLOzs7Q0NDy8vLURQFyrPQ0NCysjJdbiyRSISiaGhoaGlpKVD7oigaGRkJlJmgmygUCtY/k8kMDw/Pzc1lsVjYQdCGWq127ty5ubm5YFzb2trUavW0adOAclksFotEIiqV2traCvcIPnC5XEzj/C7boNVqFy9evHHjRtCGQGOZkZGhUqmgQ+zBgJlPSkrKy8uDiwJFyeki4YGlgEQiWbJkybp16+CGLl26dPXq1Xo8YgiCZGRkmJmZOTo62tvb29vbOzo6mpmZZWRkQEu4cLFYnJKSsnTpUqDJW7duXVJSkl5XKIpu2LDhp59+QhCEw+FgNgZj3cFukK4BgAEAWSY0kEqlbDZbIpHs2LEjLi5OpVLB0qSlpYXFYmVlZS1cuBAoM1EUzcvLmzJlCnajd+3aNX36dPgXLAp2T1ksVnZ2dmRkpO5BKpWKDWPfvn3R0dFYV8BwiXFzAsfZ/v37586di6KoVCpFEOTIkSMTJkyApxGbeRaLxefzT5w4ER4eDi/myZMnQ0ND1Wo1NgkoigLvLFBjYuqyubkZbBIYG2yczc3NWBvdVwM61Gg0ly9fDggIUCgUPB6vxzZ9kc7Ozjt37nh7e4OV6tG0gGrWHbDuZ0zXq1Sq58+fBwQE0Gi02tpaIyMjoHS0srLy8PDg8/lAhwc9IwhSU1MzatQoPp/f0dHR3boolcp37965u7vzeLwPHz64u7vDW0ahUB4+fBgQEECn0+GHGo2GRCKNHTv206dPKpVKVx31ZQb+hfZALJHL5XKZ5I+RhvVkDyQSCY/HCwgI6M4iCwyXhoaGlpaW79+/V6lUYrG4qakpICDg5cuXarXa09PzwoULDg4OVVVVdDodYz3r05WIxUql0s7O7vbt2yiKjhkzxsLCAo/H4/F4IyOjR48eAVMmZidIJNLbt2+dnZ1PnDjBYDD0LIdIJFIqlc7OzuXl5QiCqFSqkSNHnjp1SpcFVywW83g8Ly+vS5cuJSYm6l6mkZGRubn5zZs3tVotXFd+fj6bzQaWwdGjR+sRICsUCoFA4OvrW1ZWJpFIQBGMGjVq27ZtbDa7sbFRLpcvXLjQ1tYW1B/QLxsZGTk5OcERAoFw9uxZrVYLo5o6deqhQ4dQFJ0yZcqePXsiIiLWr1/PZrNZLBYwTQ4fPtzU1BSIMM3NzYuLi9vb20kkUktLS3ffpfdpFwgEc+bMyc/PF4lEwKIVGRm5atUqUGGwuod3dcaMGXPnziWTyfA2slismTNnJicnw2oARdF169YdPHhw+fLlGzduzM/P37dv39KlS5OSkjCjCCdFUTQhISE6Orq2tra6urq6urq2tjY6OjohIQFmFQiKd+3atWHDhpUrV+7fvz83N3f9+vWgFrGuZDKZQqFITExMTExEUXTnzp0mJibwzIwYMWLNmjWYukcQJD09PT4+Ho6gKJqSkjJp0iQ4HeiILVu2rFy5cvPmzdOmTdu9e/e6detOnz5tbGxsY2OTlJQETH9SqbSjo2PdunWxsbGdnZ1gxVNSUgICAuBGC4XC8vJyGxsb7EYbGhoOGDAAu9G2trZLlizBTEt+fr6XlxebzSaRSAqForCw0N/fHxuVSqXavXu3l5fXp0+fWlpa6HQ6iqIHDhxwdnZmMplwBGa+srJy8eLFFRUVISEht2/fTkxMPHXq1OjRozGzIZFI1Gr13r17AwMDURS9evUqECkDX2ZERERHR4dWq71z5w72FlhYWEAbXSUwdepUhUIhFotRFL148SKwKP/yyy+6bSZOnNjHdQkM/vbt23Z2dsCPrWeoQNd3dHS8ePHCyMgIlg4EAkH38+jRo8E7hBt07dq1qKioX375xdTU9OPHj3Q6/dKlS2ZmZtAPZrra2tpu3bo1fPjw9+/f67qqQM4oEokQBKmtrbW0tBSLxbW1taampp8+fXr16hUOh3Nzc2tsbBSLxUD/DtxwVVVV9vb2b968gfE3NTVRKJQvOR967+C/yB4IOG2kllYyjcX71Vkxuqjef92Lf9Dc3NzS0tL6ayGRSB8/frSwsDh//jysxOVyOazlBQJBa2urs7OzhYXFgAEDzMzMCATCmzdvOjo6+ngpMLl2dnZnzpzp7Oy0t7c/fvw4eH94PP7y5ctarVahUPj7+5ubm8Mzam9vP3ToUDgXPMFDhw69deuWRqMBe+Du7l5RUQH2wMPDo7y8HLMHsBIPDg4+dOhQR0cHnU6HaySTyXQ6nUgkFhQUKJVKeO7Hjh1raGhoY2NjZGR0586dCRMmFBQUaDQaWJ3Bcx8TE3P06FE2mz1z5kwCgUAgEAYOHGhkZGRjY4PD4S5evCgQCN69e/f06dPq6up3796NHj06JSWlpqamurr6+fPndXV14B9IpVK1Ws1isdhstkAgmDJliqmp6TfffDNs2DAbG5vTp0+DRvP399+wYQOfzx8zZszWrVvXr19vYmJiZmZmYmJy4MCBvpMzg5qANf7GjRvt7OzMzc0HDRo0fPhwUF779+/XaDQoim7bts3ExASHw1lZWZmbmzs6Ojo6Oo4YMcLMzOzgwYMoijIYjNevX5PJ5FmzZi1YsKCpqYnP5y9cuHDOnDngTWOBEVDHhoaG7u7uLi4uLi4u7u7uhoaGKSkp4FYymUx4rxISEmbOnNnc3MzlcletWjVlyhToCoIeMpksLS1t+fLlXC5XIpGsWrUqOjqaz+fz+fykpKRp06ZhNhv8npiYGGwlnpaWBg3g3+zs7Pnz558+fXr48OFDhgxZvXq1TCbbvHlzSEgIn88HSnp44Hfs2PHTTz+1t7cXFRURCAQbG5thw4Z9/fXXcKNXrlwpl8vr6uqePXtWXV1dU1OzYsUKb29vuNFPnz599+4dxsaMoujRo0e/+uorGxsbMzOzpUuXlpWV+fr6wokQBDl79uw333xjaGgI/tOsWbPUavWhQ4eGDx9OIBDMzc1jYmI0Gk17e3ttbW1DQ8PevXtHjx7d0tJCoVBOnDjh4uICixigyTx27NjkyZM5HI5AIDh+/DiRSORwOHw+f9++fa6urh0dHWKxmMPhAIUtg8HYt2+fvb09jUZrbW3V5coF/cVkMg8fPuzk5MRisaRSqa6iaGtr60vICCJFTCbz3LlzOBwOWHWfPXuGrestLS19fHzEYrFWq713756Zmdnjx4/fvXt38OBB+Pz27dvS0lIcDgdxY4gKiMViKpV69erVUaNGSSQSFEXfvn3r6ur68eNHFotVV1dnY2MDN+777783MTGxt7d3cHCw7xJfX1+MNPf27dvW1tZNTU2fP382MDCws7Pz8/NraGiA2FF9fb2xsbG1tTUej4cOBw8eDP+CU2Jtbd2XqfiX2AOxRCrisa6kudpaGI7dcp/MkcgxLwEiraBQer8fveAHbDabSqXCw0ShUBgMBgTO7O3tnz592tnZKewKKzGZTD6fHx4e/vDhQxaLZWNjc/nyZTabDbvvdPuUf4HzEoCpiIiIAQMGmJqavn79+ocffrh586ZSqVQoFC4uLmAP5HK5r69vRUUFh8PBnjwKhYLpcW9v74sXL4I90Gg0Li4ulZWVKIp2twdisZjNZjs6OkIgiM1m02g0MpnMYDC0Wq2Xl9eJEydANwkEgqCgoH379jGZTBcXlzNnzsTGxhobG58+fbqzs1Mmk2k0mtDQ0I0bN7LZ7JiYmH379nG5XB6P5+Pjk5eXx+fzm5qaWCwWiqLx8fF4PN7R0dHJyenrr782MTFxcnJydHQ0Nzc/e/YsnI5KpcID19nZOX/+/KKiIpFIFBQUtHnzZtB08IhHRUVt3rxZKBSGhITk5eXJZLIxY8ZkZ2dPmTIlMzNT13cRduEN3ddr8NDD6fh8PpPJbG1tnThx4qZNm8Ri8Zs3b968ecNkMiUSCZ1Of/PmzatXr+rr64OCgmJjYz9+/Pj06dOXL1++fPny3bt3Mplsy5YtRCLRwsLiH//4x7Bhw4hE4v79+7du3Wpubj5ixIgRI0bk5+dj6+KEhITJkyfr+geTJ08G/0Cr1ebl5Tk5OVlZWf3jH//4/vvvwTzn5+dDVyYmJlu2bEEQZN26dVFRUWQyOT09fcuWLdnZ2cBlLxQKly5dOmPGDF17kJqaOnHiRFjFs9nsxYsXh4eHw79gCyMiItra2hISEoKCgpqbmxUKRUZGxvjx40G/UKlUBEFyc3ODgoJaWloKCwtnzJjBZrP5fH5aWhqYDSAoRlH01KlTFhYWcKONjY2/+eYbuNE4HG7hwoXY8l+pVObl5YWHhzOZzIyMjOjo6IsXL3799ddxcXEw5j179vzwww+gNLdv3x4cHHzs2LGYmBiBQABHvLy8UBS9cuUKGO8BAwZ8/fXXTk5OSUlJVVVVpqamsMZfvHjxpUuXPDw8Ghsbz5w5M3fu3MrKSg8PDy6XKxQKDxw44OnpCQYPww9QFD137pynp6dKpWKxWGq1GgunqNXqhw8f2traWlhYGBgYREZG0mg0mCIGgwHuo27ISKTDr6krHR0dL1++tLS0HDp0KEQdwsLC7ty5g8fjGxsbGQzGmTNnCASCUCjUarVPnjwxMDBwcXFxc3OzsbExMDAYOXKkm5sb+NzwkMPyEQJBISEhbW1toEDUavXLly/t7Oz8/f0hqNjW1lZeXm5oaPj48WOw3NXV1b/88surV6+ampoUCkV9fb2Dg4OFhcU///nPwMDAV69eubq63rp16+XLl0wm88mTJx4eHk+fPvXw8Hj//j2YTDKZ3NbWBtdOp9OfP3/u4uJCJpP/nD0QSQDZlElE/xMOEov/G0D8H6JykUSuVCnbW29mBBn6p11rYknkEtF/M2gfOnQoLy+voKAAkLEvjeNL9gA68fDwsLKyAluHw+GMjIzev38vlUrt7OwePXoEgfixY8fCV69fv/7w4UNLSwuDwcDhcNevX+fxeAAzYHF/cKNEXeCzngDEam9vf+7cORRFXV1db9y4MX78+Nu3b3t7e1++fBm0fG1tLURgKRQKqG9do/X27VsGgwFRSC6X6+PjU1ZWplKptFqtq6sr6Fy48I6Ojh9//NHAwODSpUugXsHtMDIyevDgQUhIyNGjR1EUBeegpKQEQRAURb28vE6fPh0ZGVlSUjJz5sxDhw4plUqtVjtx4kQCgWBsbLx///7Ozk6wxKNHj87NzRUKhbB4QRDEz88vOzubz+fzeDx/f/9t27aBivfx8cnPzwdVuGTJEogCnTp1ikwm19XVSaXSMWPGZGZmSiQSYJNHUfTHH38cPny4k5PTN998A9BCVFTUwYMH4+Pjs7KydO2BXC6HeBqGUWOi1WrXr1+Px+ONjY2Liorkcvns2bMXL14MNiAxMXHPnj0oimo0mk2bNjk5OVlYWFhYWFhaWhIIBEtLSwsLCzMzM2tra0dHxz179igUChKJNG/ePAMDg6SkpNbW1mXLliUnJ9NotGnTps2ePRvCSmDPsrOzra2tXV1dwT9wdXW1trbOzs6GKDmgzYsXLx44cOC8efNaWlpSU1MXLFhApVLj4uKio6NhPrdu3WpmZmZlZbVw4UKxWJydnf3tt9/a2NjY2NgMHToU4lRwpeDffPPNN7CKh4DS8OHD4dnOy8s7fPjw119/7eDgYGJiMnToUGdn55ycnCNHjnz77bfm5ubGxsYpKSkQ7h8xYgQOh5s+fTr2GK9fvz4wMFAoFAIOD+caM2YM3NyMjIygoCDs89ixY7GYWElJybhx41QqFYqixcXFEydOPHHixIQJEw4fPhwTEyOVSouKiqA9RIQGDRo0e/ZsOp3O4XBQFC0tLfX19dVqtYB25ufnDxo0yMfHp6Gh4dixY+PHj6dQKPn5+c7OzgKB4NKlS0ZGRra2tjCYixcvGhgYwKrW2NgYQAXdtZpWqy0vLw8ICLhz505oaCiLxcKi4bCup1Aou3fv9vb2Bg2uG1/C4/EQMoLbLRQKGxsbyWSyXjwdlvOnTp3C4/FcLreiosLNze327dvOzs4KhQJF0QcPHjg4OMBg7t27Z25uDv5BaWmptbW1nn+gVqsBPCCRSBwO58WLF21tbU1NTRB3IpFIr1+/bmpqgsfv2bNnpqampqamI0eOxJ5AJycnT09PUFY8Ho9Kpd66dQuHw33+/FmlUn348GHUqFEuLi4ODg42NjaOjo5UKvX9+/etra2gi2DRTOmSlpaWt2/f9iWz5ov2QCQSiYVsSnNTYxOJ1i4UCTltpBYyhc4VttNJzU1NpFZW+383k4i5ba3kloa6W1vCzII3X29iSeQyiRgcQDab3draWlBQQCaT/5g9YLPZVlZWly9fplKpzc3NHz9+NDc3f/r0qUwmA3sAgaDW1tbPnz9bW1s/fPhw6tSpBALB0NBw6NCh3333HdgSCBmJxWIGgzF27Fg8Hn/v3j2FQtF9jshkMpVKtbe3r6ys5HA4jo6ON2/eHD169LVr13x8fDD/ICYmhkAg2NnZEQgEUN8AM0DgErNVACBXVFSEhYVdunRJIpH4+voeO3ZMqVTCqcViMYvFcnFxOXXqFIqibm5ue/bsYbFYzs7OlZWV48aNA3vA5XJ/+OGHQ4cOgTUKDAy8cOHC+PHjjx8/LhKJfHx8sGYkEgl8FxRFExMTwcHH4XCOjo7gsiAIAjZAKBRKJJLAwMDc3FzQKZg9gKAZi8Xy8fE5cODAli1bbG1tjY2Nhw4dOnToULBYp0+fBrB66dKlNTU1fn5+27dvR1E0IiKiuLg4Li5O1x7AC5mcnIzH4/fu3avnn4nFYhqNxmKxwsLCduzYUVBQADfOzMzM2Ni4oKAAHE2JRMJms5ubm6OiolavXk2hUOrq6qKiojIzM5ctWzZ79uzW1lYOhyOTyZYuXVpYWJiWlvb999/v3LmTxWLNnz+/oKBg7dq1S5cuBQeITqc3NTW9f//+2bNnsDrDPrx//76pqYnBYMjl8pSUlG3btm3btm3o0KFbtmxhsVhLlizZunVrZmZmXFwcdMXj8eh0+vz585cvX45FhEDzJicn6/kH69atg2gSrOCoVCqNRmtubq6vr5dIJOnp6VFRUVQqVdc/yMzM/PHHHzMzM8eOHQsgCnhRK1euBCTj5MmTjo6O1tbWEEBbvXo1FlsbM2YMzHB2dnZwcDC8htAVDB4Qi7CwsI6Ojo6Ojry8vLlz5x47diwkJKSzszM7O/vHH388efKkj48PBA9zc3MBdD137tzEiROlUumBAwfAHiiVysOHDy9YsKCystLAwCAuLo7D4ezbt2/27NlVVVXe3t4wD2w2e8eOHeHh4SiKlpWVubm5gX9TUlKC+QfYswH2wMPDQ6lUnjhxIjQ0lMlkgkIXCAQoij5//vzbb78dNWoUg8EAFVxaWkogEMhkMplMhrRD0Pg3b97E4/FgVHTXggKBAEGQBw8e2NnZAQgB9oBIJEI49/bt25g9ePfunampqZ5/4Orq6ujo6OvrK5fLISXs2rVrEyZMqKmpsbe3NzQ0BLUAZg/CR0qlsrq62tzcfNiwYU+ePMGcg1evXp08edLCwgLy2QDYqK+vx+Fw9fX1kOP35MkTaPzkyZOGhoampiZXV1cCgWBvbw8BIkNDQ4gXwZrD29sbevtD9kAklkq41MdFM90c7O0cJ+feb2y5nOZiZz0iMLXi4AoPZ7yVheXCE/UMoUopb6fd3zltpCMOZz3iu4Ff+26+08pXdjDpbfv3729ra4NgTmFhYWtr6x+2B7a2tu/evYO1iVKptLe3f/LkiZ49UCqVUqnU3t7+4cOHgIkBuuDk5FRRUcFisXg8Hkyuu7v75cuXORyOq6vr3bt3YYTYdEil0oiICDweD/EiGxub//qv/3r69KmXl9etW7d++OEHLArU0tLS0NDw+vXrT58+kclkGxub48ePQ0Ie+B+QFARg8rVr1wICAi5cuDBp0qQzZ86Eh4dXVVWBZwN4kaen58mTJ1EUHTVqFESWfHx8wB5AatCUKVPOnDkzfvz4K1euTJ06taioqKOjw9fXF/KIQkJCDh8+DK93WFjYli1bKBQKl8v9/PnzkydPnj9/Dg8cTK9Wq50xY4apqamDg8Pw4cP//ve/DxgwwMrKys7OzsjI6MSJExD0l0qlKIqGhYUBwMvj8by9vXfu3Dl58uR169YBTYWef1BcXIyiaGhoaElJydy5c9PT0zE9iCBIbGxsWloan8+Pjo7eunWrHrQAp5s2bVpaWppcLqfT6S0tLWFhYSkpKTweb8GCBTk5OQiCQNbQqlWrqFTqpk2bXFxcioqKBAIBl8tNTk7euHGjVCpdt27d+vXrBQJBUlLSli1bNm7cWFxcvGrVqrS0tLVr1y5evBgcoJycHBwO5+DgQCQSHR0dLS0tcTgcOApEItHGxqakpKSwsHDFihUCgWDVqlUbNmzYunVrbm7u5s2bly9fnpmZOWfOHJhzhUKxZs2amJgYEokkk8lSUlJ6iRetW7du8uTJQqEQlm/g3fP5fFiKbtq0afbs2RUVFYAfrFmzRiaTpaenL1iwoLi4GFKAIMKzZcuW8PBwyMmh0WjPnj17+vTps2fPnjx5AqYFUoAA8LSyshowYMA//vEPY2NjBwcHU1PTuLg4BEG0Wu3hw4cTEhKKiormzp1bUVEBNgPDew8ePDh9+vSLFy8OHDgQ1JmRkVFUVBQAHrm5udOmTTt16pSfnx9kDU2ZMoXP5x85cmTatGmnT59OSEg4d+5cSEjI2bNnvby81Gp1R0dHaWkpQNNCofDEiROQMCP8dbxIzx64u7ur1erOzs7jx4+HhYVBqgLM/Llz5wwMDAwMDKZOnapSqVQq1dWrV11dXeVyOYvFghdcrVZfv37d3d2dz+dD9El32w0YxXPnzgUEBKhUqsuXLwcHB3e3BzCq+vr658+f//LLL7W1teAfgBJ/8uTJ69evW1paQJOIRKLW1tbOzs4LFy6YmJg0Nja2tLTQaLSysjJnZ2eJRFJTUxMWFnb9+vVvv/0WLAr4B25ubnC/wMmDVNRHjx599dVX/v7+NTU11tbWzs7O4EkQiURXV1cAHT9//vzq1avW1tZ79+6ZmprW1NRA1KilpaWpqekP48liqZTHaKlcE51x5taduzdzZliMz73zse7GZh+Dbw0tFx9/8/bNtfRgq0Vln5g8PuXsSp/4rwgAACAASURBVNforLOvPnz+cOgns+EB62+SWpicvbsLMzMzITJAoVD2799PoVD+jD24evUqjUYjkUifP3+2sLDo7h9IJBI+n29nZ/fw4UMURdva2kaNGvX06VMXF5cnT57I5XIejwc4j5ub25UrV9rb211cXO7evQvJQroCbhcej6+oqGCz2aNHj7548WJwcPCFCxfGjh17584drVYrEAggGjh27FhIQ3Jzczt58iSfz4eXHPNPATy4ePGin5/ftWvXIOLk4+Nz5swZ3ZDRqFGjwB6MHj163759bDZb1z9AEKS1tVWpVIILHxERAREnHx8fsAc0Go3L5Wo0mvj4+CFDhuDxeCKR+PDhw6SkJMAJMGxAq9XC0phCoTQ0NISFhX311VcGBgbbtm2D2JduUhCKouPGjYO0TpVKNX78+NOnT8fGxhYUFGi1Wi6XC9GhTZs28fn80NDQ9evXy+Xy6dOn7969Oz4+Pjc3VzevBnS9UCiMjo6GsLvezKMoOnXq1M2bN3d0dPD5/EWLFmVnZwuFwsTExNTUVLFYjCDIsmXLcnNzIfiwa9cuCJQvWbIkJycHMnyysrJoNBqNRps/f/6cOXOYTCb4pnFxcenp6SkpKRA3F4vFbW1tjY2NNTU1NTU1kKE0adIkDEh4+/Yti8VqaGigUqnLly+PiYkBH1wsFi9evHj16tWZmZmg6LVa7d69ew0NDUeMGDFy5Mj9+/fv3bu3l3jR9u3bDQwMIF4EyzdTU9Ply5dDJHDnzp2DBw/OzMyE/gsLC1NTUwsKCuLj4/fs2TNx4kQ4Y1lZ2fDhw42NjUeOHJmdnV1VVQU4AWADixYtghvN4XDgtmZlZRkYGHz11VeRkZENDQ0UCgVAdfCYRSJRaWkpYE6TJ08GwCAwMBBBENgRsn//flhjMpnMnJycMWPGwGgBRQB7oNVqIcultLQUwGSwc6WlpaGhoVVVVR4eHiiK3rp1a8SIEcOGDXNxcVm2bNnNmzf7Ei9yd3dXqVRSqbSzs/PQoUM+Pj5KpVKj0dy4cWPKlCnl5eVEIlEgENy8eXPcuHHXrl3z9fW9f/8+5gpoNJpr1665ubkJhcLKyspRo0bp2oOOjo5Hjx75+fm1trY+evTIxcVFIBDcuXPH0dFR1x50dHS8e/cOj8c7OTk5ODgYGxtbWVnB4OFG2NvbBwcHC7ty1sEgQcSfSqWiKPrw4cPg4GASiQSbOSDxwcrK6t69e5DfUV1d/fLlS4hcMZlMtVqN4QempqYkEqm2ttbExOTmzZvPnj17+fJlRUWFmZkZjUZDUbSxsdHLy0skEpFIJBwO9/79e3jNqVRqH3fm9mQPxFK5kEOpSBo+3Jxgb+9gjzMzwa+qam59tjvKfEzK2Y+cDjn/ZX6EadjWe42tL/ZPxf108D1DjigFz/LGW47bcOXzniPH0jemZWZmFhYWFhYWFhUVtba29p7y1Ys9aG9vt7S0NDU1hbAMpJnq4geYPZBIJHg8/unTpywWKyAg4Pbt21Kp1Nvb+/z5897e3g8ePOjs7BSLxXQ6PSgoCI/H3717t8d4kUKhaG9v9/T0vHLlCoqiPB5v1KhRVVVVwcHBZ8+eBYQWXqTOzk4bGxuI+48ePdrExATyi3A43MOHDyHhGsCDGzduREVFnT17Njw8/Pr161FRUUePHoWQkZ498PX1hVwgQ0PD+/fvA36AIIhMJuvo6GhtbQ0NDc3Pz4fosKenJ2TUwA5kkUjU1tZGp9Pfvn1bXV0tEon8/f137NgBOMHo0aMhvg+JQzKZDOIAkZGRRUVFixYt2rdvH4IgEFXDlFdwcPCuXbukUum0adPy8/OVSmVsbGxhYeHMmTMLCwslEklAQABo+ZiYGENDw5MnTyqVyokTJ2ZkZOgu9GDGvhQvwk43bdq0jIyMrKwsGxubXbt28Xi8mTNnrlq1qrOzE9w7KpXa0tLy4cOH6upqCoWyadMmIpGYm5urVCq5XG5DQ4NYLN6xY8eIESMGDRoE8ZNt27ahKLp8+fK0tLQ1a9akpqaCKYIAbkpKyrp16wDm/e677+BVd3BwKCgoQFG0sLDQ1NR00KBBVlZWFhYWaWlpKIquX79+1apVmzZtSk5ORhBEJBKxWKy2trZPnz49fvyYxWKlpqZOnjyZyWQymcykpKSZM2ditl+hUKxdu3bGjBkMBgPyZCAABVoY/IOIiAi1Wr1169bY2Fi4X5CiitkDkUgEeQcNDQ2PHz+m0+nbtm3DsIENGzaEhoaCzevo6EAQpKCgIDk5edeuXZMnTz569OisWbNgNSOVSgUCATQTi8VbtmyJjIxsa2tDUXTXrl2+vr7gkKEounfvXgw/OHLkiL+/P4IgkAUkkUggXoSi6I0bN6ysrAYNGjRixAgbGxvwZsrLy6Ojo48dOzZhwoTOzk7Y89Xc3FxdXd3S0nLq1ClXV1cajcZkMvfu3duLf6BSqcCZvnLlipeXFyTdsdlsHo93+fJld3d3BEGOHz8eEhICql+lUpWVlf3www8ymUwikSgUip9//hniRUwmU1cjQTbdpUuXYmNjz5075+Pjg6LonTt3nJycdPEDGBWZTKbRaGDzKisrXV1dIbX96dOnoHxBsXZ0dFy/fj0oKEgsFv/yyy8RERHXr18fN25cS0uLQqEQdiUWvnv3btCgQXZ2dg5d4ujoCDEfzD8A/IBAIEgkkoaGhsGDB4Nb4Orq6uDgYGZmBrknnz59MjExgbS3IUOGQJwch8NBJK0vO+e/YA8ETNLZ5VZz8u+9bmqj0aj0VgarnfHLzgjzsO3VTLFSxn2+M8IibNuDZvLzwgiTn4rf0eSIUvCqMMpi3JY7rSQd/4DNZsPqo3fr1Is94HA4Hh4e169fh/Us5JlB3re9vb1uvIhEIrm7u1+8eDEqKurmzZsoigKgGhoaamRk9OLFC2gpl8sh1IMt4fVmRKlUenl5VVVV+fn53b9/XyqVurm5PXjwwMPD4+7du3Bf1Wo1wM4Q59Fqte7u7idOnMDiRVi+pp+f37Fjx+AR9/Lygs/t7e3gdsC7rWsPADSGCIBGo/Hy8gJ7oFAouFxudHT0qVOnZs+eXVpa2tnZOXHiRPAzsKQdBoPB5/Pj4+MdHR0fPXoUGRm5c+dOoVAImxL27duHoiiFQmEymVOmTNm1a1dnZ+e4ceP27dsnFosnT568a9cuiBGDBy0Wi8PDw/fs2bNo0aJdu3aBtVAqlcuWLTMxMamqqsrIyID9BzY2Nt9888327ds7OjoUCkVERMSmTZtA42BzC1Gg+vp62Ibd/TFAUTQuLm7o0KF79uwBG7ZmzZphw4ZlZmaCPYB48datW4lEoouLC+YifPjwgcfjLVy4EAAMqVQaHx+/YMGCurq6adOmgbrncDg//fTTokWL2tvbIfoMaWZxcXHx8fEKhWLJkiVz587FwvqQ+SqTyZYsWTJz5sy6uro5c+YA9tDe3p6UlDRv3jw2mw2GDcLf+fn5jo6Ohw4dys7OBmgBRdENGzZg9gBF0czMTEicx3btgQ2AbWXQPjw8nMfjLV26NCQkpL29vbOzMyMjY86cObr2APC5gwcPOjo6bt++vaioKDQ0FKZx8+bNsE2MxWKxWKzc3NzY2FixWLxr1y7QyHCExWLBfjSpVKpSqXbt2pWQkHDkyJHp06eLRKJjx47p7nTbt2+ft7c3PBs7duwA/0DYFeU7ePDg6NGjtVqtSqUqLi728/P7+PEjhLNgsZKfnx8aGgo+bnt7O5/PBx26fPnyixcvAq6AduURgYnFngo9ewBrLBqNhsFvKIpWVVVhDgHE7keOHAm+iKenJ6yW4GWvr69vbW3Vw5MFAgGst0pLS/39/T98+ICi6O3bt21tbZuamphM5tmzZzF7wOFwwAvh8XhPnz51dHRUKpX37t0bN24c5PNA/vGNGzcCAgIAu25razt9+rS3t3d1dTWdTsc2iKlUqmfPnsFankQigX6jUql3794lEAh6+AGBQID9aBYWFrdu3QL/4OzZs5BLiiDI48ePiURifX19U1MTDofD4kUQm/mj/oFQLJUJmU1lyUSnxQfeNlCpFPLNe/db31emBRr5rD5bx5Bwm6+ljRnmm1JVS6KdX2ZrPWL67md1n+tvbB5j6L3y1Du6TMVktBUXF7e1tUFi6G+Oo5d8U4FAAFnSsNcO/lIolE+fPllYWDx69AhW/U1NTYGBgT///HN4ePiJEyfa2togA5VMJj9//vz58+cQzYc+e883pVAorq6ujx49Cg4OPnPmzMSJEy9dutTR0eHv73/27FknJyfQ421tbePGjbt8+fKUKVOqqqrc3NzKysqweFFzczMk57m7u1+9ehWUiKen5+XLl1EU1Wg0/v7+JSUlsMbp6OhwcXE5fvw4giBUKlUgEKhUKkBQiUQi7DjjcDgTJkwoKSlRq9U8Hi8iIuLAgQNNTU11dXWQusDhcLRa7bx58wgEQllZGVQmCA8Ph+0CNjY2X331FUARCxYsIBAIpaWlkE/i7+8PGLJAIIiLi4P9aAiC8Pn8mJiYw4cPJyYmpqWlQSobTOnbt28BjYB5hlwjf3//nJwcqVQ6Y8aMkpKS5OTkLVu26D2IkG/6pUcCQZC4uLh169ZBNDkhIWHjxo1cLnfhwoUbNmyAcJ9EIvn8+XN1l4CLYGdnh8fjt27dCg0g1X3VqlVEInHDhg2g2ZctW7Z169ZNmzatWbNG1CVLlizJysrKzMzMyMhISkqaNWuWsCusDylqkL6SlpZGJBJXr17NYrFkMtnatWs3bty4bdu2JUuWwLB3795NIBDWrl0LGjMxMREyStls9sKFCyMjI7E9SsnJyfHx8ahO2hUgCrAlDUGQoqIiSDeCvCMbGxs4V3JyckFBASh6rVZ7/PhxAoEAKVhisXjv3r0DBgzAIlSwv+H06dMEAmH+/PnCrjhVUFAQhP72798PPwfXMz8/f8qUKSKRqLOzMz8/PyYmBnLk4NESi8XHjx+H3QmwyyE0NBT8A7jGXbt2hYeHQ34Rg8E4ePAgkUiMiYkhk8lKpfLQoUOzZ88+depUdHQ0j8eDpe7UqVPpdDqLxdqzZw+RSKTT6Ww2e8+ePU5OTpAgjs2PVqs9deqUs7Mz2ANht2pFWq323LlzRCJRKBRSqVSNRnPkyBFHR0fYrgwLdkzP9JhvChr84sWL0dHRly5dCgsL43K5v/zyy3/913/h8XgbG5sRI0bY2tp2dnbW1NTg8fiAgIDW1lYURe/du4fH44VCoVqtvnv3Lg6HCwoKUqlUr1+/DggIgKXPgwcPCARCeHj4gwcP7O3tfXx86uvryWSyUCjs6Oh48uSJtbU1n8/v7OwE/QZd6eLJcrn89u3bFhYWPB6vvr7ewMDA1tYWYoOQAcjhcJ49exYUFHT37t2wsLArV65YWVnV1tZCvIhMJjc3N/+J/WhiqUzIbD6WaEOwtsbhie4rTryrSPW0NRlmZD1ydXnduQ0/2Jt8b2TusOY8mdL6ZGekDd7KGoezMh3+/XBL2xVnmpkilZzL4fRlBNj96KWenW7wC5jUgoKCcDjcsGHD3r59q1aroVjF1atX1Wo1mUwOCQnBgrOwWczBweHt27cqleo3p0MsFoeGhl68eFGpVDIYDIgRdXR0wO7/8PBwIyOjx48fIwgyfvz48vJytVrNZDInTJigl1+Ew+GePXv2448/lpeXK5VKlUoVGRl56tQpiFDB+i48PPzixYuwqgoMDDxz5oxWqwXftqOjY9asWXg83tDQ8MqVKwiCTJ48uaSkpLOzEzzf9vb22NhYSDiD0129ehVBEDKZXF9fz+PxVCoVgiAREREFBQUMBoNOp48bN660tFS3jVQq1Wq1UVFRxcXFCILI5XIajVZfXw97j+fOnbtjxw7wbBYuXGhnZ4ddmq2trYODA+aawBIyNjb24MGDq1atysrKUqlUEolk+vTpe/fu1d2J/ZuPQVtbm0qlSk9Px+PxO3bsgFoUYrE4Li4uJydHq9VqNJqsrCzMubazs9u+fTuTyayvrwf/GhrY29vn5OQwGIzk5OSioqLs7Oxly5YpFAqZTJaYmLhx40atVpuampqcnAzj37RpE+wn0L2DBw4cOHz4sL29/ebNmxkMxpo1a/Ly8goLCxMSEmBD8sqVK6EGBvg9DAYDRdH9+/ebmJgYGxtj+5ONjY3T09MBwf7pp5/ANmBXjSBIVlbWnDlzYF3M4XBIJFJ9fT3kJjIYDEhkkkqlO3bsmDFjBihiuGRIbAfUYdKkSQwGg8FgZGRkxMbGIgjCYrGgDewp27179+TJkxEEgTBsfX09hUJBEOTw4cOAb0NujEqlOnjwoK2tLXbH16xZU1FRERoaSqfTGQxGQUFBRESEVqvVarWXL1/G4/GzZs2CFJ0rV67Y2trOnj2bwWAcOHAgMTHx2rVr48eP5/F4arW6pKRkypQpUqkUAAwURe/fv29mZmZoaIjtTzY0NPzxxx91Q0YajaaysjIgIABLydMTjUZz6dIlPz8/mIrq6moLC4vAwEC4nL7sR+vo6Hj48GFgYCCFQlGr1efPn4+Ojn7w4IGnp2djYyOdTq+qqoK9xwKBAEIUMpmss7Pz0aNHnp6efD4fXJCGhobm5maRSATYwKdPnwgEgq+vL0w1bB+5f/8+Dofz8/ODOXnx4oW7uztWtkupVNbX11tZWTk6OsI6BjtiZ2cnEonq6upGjhz59u1bEolEJpPv378/evToFy9eBAYG1tbWYvsbhg0bhuUX9T1k1Eu+qVjMZ7U0NzY0NDQ2tbH5LBqJRGohkZppLB6LRiK1tJKam2hsvkgiaWe0Njc0NDQ0NpNaW5qbqCy+QNhTKKYX6d0edJfm5ma4K7B3XygUkkgkWBvKZDIIB+lJ30tWwDZxrCusUJ1cLgewHvADrJlcLoe0tqamJt0zwp4U2LcF3WKfoTcymQxgl0gkAkBYN9oOWzGBUBrSmUCDYz+nUqn19fXY6bBNxXKdgnSwvUupVCqVSliCdW+jW6IO+woGABsFwOHVPRcW+NbN0ICqeYBIw3tIo9HodPrvqmIEP4RLg8xRuFjwRcBgQ9wcBMyAboEjAIqx43Q6HYJvUNgOCuGBx0mlUrGDLBYL9K/uZQJ8Wl9fD84WVNCDDuFXTCYTyx2AAQBWj3WFqXUajQYDA+2se8kAP2BbpvVq4SmVShaLRaPRsAp32BpZ3lWQTtRVEwludHt7u26pOKwNm83G6sphX4lEIpgQbFSw6Ud3HiBXjU6nQ/+wyQD6Z7PZ9fX18HM4Beg+GEZrayv4ajA5ENqGC4RFHpvNhhILcCvhs17RIb0AUXeBBuAHwGcoG9fH913YVZsPtDw8RfDe0Wg0uAUAXAl/7WGA3sf8D72vIIeloaGBRCLBrRR1bVoGsyHs0nsQEsA6gToWFApF7wi4FHw+H/BhhUIB0RcobwUYNYTFsCnF5M/kF2FfYqUrpWIR9o/eZ6FQJPl1icv/2ajWd/m99gArAordcl0foscSoX1/OHqpTa0baNJr1uMZey9z/ZvfQj/iroqteg30aov2qHZ7PwV2vMc51z3evY5p9zPC4yjtQ4np35TuYSW9bnWH0f0UmHbGfqhbUhTSw3U/CL9c9br3riRfKEndvSto1mP7Xo7rfdtLs98clbCrbGpfjot/XVsU7qxu5VG9KqTY6eBf+BYehi/9sMcTgXQfZPcf9tLgS0Gh3kWvB9Aneke6/+pLx3sZiairjN2XetBroHdE1FO9a72hdp9S+f/1enZ/Sn6vPeiXfumXfumXf63024N+6Zd+6Zd+EQr77UG/9Eu/9Eu/gPx72AO9zXW977Xr4048Pbyh7+jCn5QvBfF7/6qXlr2gAnrIx282+1K4v48wwO9CC36z8b8Eh/hfFcmXuSr/GE7Ql55/b5+/qyuI+Ov+q4sNYAd/b2i+d/nzHf6rhtRjaP53/eR3fdtjs16Ait8EWvp4ul7k38AeCAQCXSJM4a95MfUEapfqJup01/WyLipN2JeEff69JqE7hoyl7mD/dr/MHsky9b7qDt7q7aXUY9/sTjsjl8upVCpGy9VjM1CykFwkk8mgTlaP7Jt6iUlfGhXW7DenTi6Xw3m/pJsg6QXGr/v5N3v+18qXQGYYIcaaCXjsnyHU1J0H0a8J1PSyj4TdWDBhm0uPLJhSqZTL5ZLJZKwrPUJN3Q5hgzeZTIaxASEMJLropr31yJGp11WPooc5gwB9E51O12Xy+l1KTdQHkssvQazyLzBcdv/3S91CcaEvTQWkBeq27xE6hpQh7HN34kyRSMTn88lkMmwHAWlqatLbWgG/hdQj7AJ7mZYex/z/tD2QSCQcDicoKOjmzZsymQyy2sPCwu7du4eRU2KPplKppFKpISEhb9++xfLiscQ7rE8ymdze3u7l5XXv3j0ul9ve3g6VcnUL2/VlwLA5C/gsMUI0yDVs/DWzJvYTjUbj5+d39uxZjUajuzAXiUQqlWrs2LEVFRVarZZMJuv1jJkrkUgENSSOHTuGIAgUUIKNzdiJQFNPnToV6uKJxWKtVjthwgTY1ybvSieFeugTJ04sKSkRCARyuTw6OhpKVuheKYqikyZNKigoQBAE6kdiBHC6hg1BkJiYmF27dmEzj4me5YYjc+bMycjIwHgW9QRBkHnz5gFpJYIg8fHx6enpfafW+ZcIWDgoQ6bLWgW8IlDoIjExEUEQSIRNS0tbtGgRZNRs2rQpISGh+0z+n/beMyyKdN37XWvNnhnHNaZRBFQEmgyCGAiSg4AgIFlAAUVFBANBooCRoKiYFQOYxYQBDJgDiJhQQCVK7iZ2AJqmabrrfPgf6qoBcZx91vuemb15Pni13dXVRYXnfu70/8XGxqLPYABQkwp2JggCkqJkb3BiYiKE8zB/0el08mAYDAZwBYMpmJ2dnXw+Pzk5GXpNnZ2daEEgUTxkHSomPgaDsWvXLg8Pj56eHvz3xIkTNBoNfwguJQSLbGxsBlxlcldUyOWAAbM0YBs6nX7o0CEDAwNSEZrc8jsvExWWyfka5BJzy1CEy/r6euwHLQjGxsZfvnyBREd+fj5aLmBrBxsGgUCQm5urqamJqjPqR2gyvXfvnoWFRUdHB9CVKDimWiC0KRQUFMycORPi4a9fv54xYwbAPuTeeDzex48fJ02aBFkLNFTJycmpqKigYBrblJaWKisrU7Fo1ErW7xl/dXvAYrHQj2pgYPD69WvMR/n5+UpKSllZWXV1dWVlZZh2Ozo6Kioq0M0L5Tv0f0+bNo1kqGHhM3/+/Pz8/OnTpz948MDd3f3Zs2fq6urQpON+X1kqFjh2dnZUmesJEybk5uYuWLCA/O+9e/eokGQOh4MW5YsXLwqFQqqjwGaz+Xy+hoYGFKTRiQZSJl7cuHEDXV2YW+fMmYNm5r6+PhMTk71795L9O6jQNzExiY6OBhkDqnPa2tobN26E/Dje8fLyysrKsrGxOXHiRFBQUGZmprW1NTmh44fwwsTEZN++fQRBeHt7T5o0Ca1DYmJiENLAX0cQhLm5eVBQ0IAZAcIP5FnFDiHFExAQEBMT81WTQBDEggULACkjCMLBwSE4OJj4PVrnjy/Sd15LztcLpAHDUVBQkJCQQMOUvLy8vLz81q1bsQTz9/eHnt22bdu2b9++cePGVatWHT16dNu2bbGxseSE3tEP1OTxeGRz8q5du6gNaxCzY7FYaAcLCgry9PQkKZhr1641NzcHMIfNZqenp1MpmL/99tvPP/9MpWBibzweD2LXnz59+vLlC3rltm/frqWlBQFguCAikej06dNohIZcx7lz58j/0un02tpa8pq2trYmJCQAdka9yvAhhELhzZs3ZYYYixYt6u3tFQqFt2/fhjIzjl9cXPyHH36AbJSioqKCgoKrqyvZivztgeURYJnQlh8w9QP6/fjxYzExMVIaiPrawMAAJhyL98uXL1tYWLS1tVVWVn758uXQoUPTpk2DZiJ1pY8bp7e3NzMzU0VFpbKyksfjUY+qq6vr5s2bioqKz58/r62tRT9EdnY29CTwcPX09Hz48GHBggW5ubmqqqqvXr1ydHR88uSJrKxsW1sbemCxw56enrdv34qLi+fk5EAWu6Cg4Pz581Cyw8qSz+cD6EalpMnKyqJX5g/PJPlH/dXtAZfL7e3tbWxsbGlpMTY2VlRUnDBhwsiRI6WkpAD7ff/+PehgVlZW48ePh+4gjUYDIR1PcnFxMZb/VVVVL1++LC8vV1RUvHDhQnFxcVtbm5KS0tmzZ1taWiAy8Z1rE/QlycvLQ6YCJkpHRyc1NbWtrU1WVvb8+fPkdImnRV9f//jx46DiQP0CszxWXlpaWvv27cNCr76+XlVVdffu3QAhHD9+HM2rBEGYmZnt3bsXDwxuLD09PbgIcEFcXV2hvwb96szMTA6HY2trO3nyZBqNJiYmlpGRweFwXr58WVdXZ2BgsGXLFuiqm5ubg31GIuA5HI67uzv0Vru7u83MzEg4mqGhIXTiWJQlPygLeNRxO06cOBHUTHRastnsxYsXr127lsPh8Hg8T09PmAQej0e97hC2Cw8Phz1wcXFZv379n7AH7A4Os53Z3trG+ualZHdwmMyhNkN0pbq6etGiRcuWLWtvby8qKvrw4QOXy12/fv2GDRtiY2O9vLy4XO6bN2+qqqpWrVrl7OwM/X0Q0FpbW6lAzZiYGH9//5aWFg6Hs379emtraxKQQKpYc7ncrVu3Ll++vLW1defOnSRMkeTnhIaGcrncoqIikoIZEBAAGWRQMAsLC6F2eeLEiX//+98TJkyAurWvr29vb+/u3bvBYZ40aZK3tzc0SpOTk3V1dUErIQhi586dOjo6bW1tTU1NQqGQIIgrV66gKV1aWnrs2LFALJBYRwUFBR8fH4FAgPa0wa2gGOgyw4wDOULgWjdv3qyiovL69evnz58/e/bs5cuX3+kfwLNpampKT0+XvVY0BAAAIABJREFUl5dHx9/Dhw9JEs6UKVOgwZeVlTV16tQXL168e/cuJSVFSkoKr/fu3augoNDR0QF70NPTw+VyW1tbCwoKMIHIyMiMHj1aSkpqwoQJFhYWnH4RJMy/N2/enDdv3v37942MjKgmgc/nQ24IhocKWB4/fry5uTkaX9rb2z9+/FhYWJiTkyMrK/vu3btPnz69fft28uTJRUVFWNRidQ8Gzq+//qqmpgZZbA0NDUVFxcmTJwPR0dnZ+ezZMxMTk9LS0vr6ehBcbt68qa6uzmAw/hQq+K9uDyorK8vLyxsaGphMZn19/cuXL9XU1B49esRgMF68eFFcXIwW5crKyhcvXhQWFj5//nz8+PGHDx/+8OFDbm7umzdv8vLyoLSOWJOamtq4ceP++c9/SktLq6ioPHjwwMzMTFpaesKECVJSUgUFBd95+qANoKKicubMGRaLNW3atOzsbH19/Rs3bvD5fJKXiY27u7ubmpqAXoCW0ezZsy9evIhZvqampr6+fs6cOVBIffToEcwD3AWqpF17e7uent7ly5ex9oT4IkQpIFkKxOaOHTuam5shtwdd+2PHjsE5nTVrVlpaWlhYmJqamri4+D//+U8JCQlVVdXLly8vW7ZMSkpq4sSJkyZNwrHZ29sHBwfT6XQo8ru6um7cuBF/kampaWJiItEP8nRzc9u8efOnT5+ePn367NmzFy9eFBUVMRgMIyMjUDOBu/Hx8dm/f39YWFhiYiJo0l5eXnFxcQwGY0DMxMnJ6U/ZAzanE/mczo7O7p6u8iuZN+4+LO7r7eZw/l/OH7ezg8PhdHR2gVjSxeULuquuXb+Rfa+oT9A9aP7B7Ax6QX19fWdnZ2Bg4MqVKwUCwcqVK8E/WL169enTp1VUVKSlpX/44YexY8eqqqpu3749JSVl8uTJkpKS4uLiiHRt2LBh3rx51dXVW7ZsiYmJSUhIsLe3xw+tXbsWMRyRSLR582bIoiUmJi5evBgyeaGhofPmzaNSMNPS0kgKppiY2K+//kpSMFetWoWTtmXLFiMjI2QXIiMjbWxsDh8+7OnpyWKx6HR6dHQ0qVe6a9cuMHNqamq4XO6ePXsMDAyYTCYWxXV1dc3NzRUVFY2NjeHh4SoqKiUlJaR+VG5u7tu3b+EfsNlsHo8nGGJQFQnhlINWPXXq1JEjR06fPh3v+Pr6Ui80tcFtwMDCH5BLuOkLFizIzs5WUFD48uULnU6HihFUMUaMGKGhoTF9+nRZWVnyNY1G09DQQN9la2srYnfNzc1tbW3FxcX5+fnwbi9evCgpKYnOajab3d3dzefzs7KyDA0N0fcLukllZSUsCiZ6TDvHjh377bffnjx5UlBQkJeXB+EvGI/i4mLYiV9++eXHH39UUlKytLR8+PChtLQ0gDa6urrAccM/kJCQ+Kp/IBAIPn78qKur+/jxY1B7GQxGfn6+mpraw4cPq6qqvj9q9Je2B2hwNzAwkJGRERMTKyoqgjzcuXPn4BWam5sXFxf39fUxmUwTExM1NTV4BpMmTVJWVsbcChMtLy//+vVrPp9fX1//6tUrJSWlH3744fTp0w0NDSB11NXVycjIkPpCOICuIWTvqPGin376CdK+P/3006NHjwwNDW/evDl37txz586RMRwul8tgMPAmj8cTiUQGBgbHjh0jxexcXV1BvU9LS4Mn1NvbO3v27JMnT8IwgH3W3NxsY2OTnJwMMCeyC5BDsLa2PnjwIJfLFQqF4K/hUZ8/f76YmFh6ejqStwRBGBkZ7d+/v6urq7S01MLC4scff9yyZUtdXZ2rq2tCQkJ9fb2Ojg7W7CKRyN3dHQGN5ORkLpfr4uJCquP98ssvhw4dgraaj4/Pvn37Vq9eTbIWpkyZgmOwtbUFJS0kJEROTg5wgsrKSnNz84iICMTQAgICaDRaamoqvCWsphcuXBgWFgaD5+zs/Af2gMNhNjfUVpSVVVTVtXV0fTi1TMfSNPB4AbuD095Kr6ssK6uoqm5obm9raaz9UlVNp9PrGU2Ml8dX6FkZLj/yksVitQ+8zkKhMDk5efz48eLi4lJSUhISEhMmTPjpp5+2b98eGxsbHBwcFxe3ePFiRNsDAwNHjBjh4eFRWVkZFRXl4+MDwNn8+fM5HI5IJEpISADR08fHh81mJyQkYMkvJyc3duzYpUuXwh7s3LkTFExPT08Oh4PHODg42MLCgkWhYIJ2CfciKipq7ty5eB0eHg6layQhEOiHrzBy5EhfX1/cXbAB5ubm+PTYsWO//PILnIbAwMArV6788ssveI7ExMSQfiAIAsQFKSkpKltUQUHB09MTaSoyrDQgRk++xsK/tbW1uLgYtqSkpGTjxo3y8vJv3759+fIl/AMygw2xMsSjBqdGYX6OHDmiqKgINK+2tnZWVpampibcmuzsbKicUv2DvXv30mi0vLw8qn8AHSFZWVkpKSmAHAoKCsBOIAji+vXrWlpaWIZDC+TGjRsGBgZ0Ov3ly5c6OjpQ0jY0NIRsTGFhIfTmEHbDdCQmJgZMgqqqqpGRUXt7OxRTLl26NGLECDExsVevXj179kxPT+/Dhw93796VlJT88OEDLJBQKKyoqJCWlqYyNSF53dbWBkObl5dHhubgVo4ePVpBQUFaWlpeXp6at/jG+EvbA4zq6uqioqKpU6c+e/bM0tJy1KhRioqK48aNk5KSevbsWV1dHfIH9fX1eXl5qqqqt2/f/vz587Nnz1RUVG7evKmlpXXkyBGk7FFOY2Vl9eDBAzU1NewTC/Pc3FwtLa379+9TxdfAtR+KOwopGxUVFWBw4B/AHpibm58/fx5YDy6XS6fT586dm56eDh5hU1PTjBkzMjMzEU1Care2tlZDQwOQy46OjgH2gESknTx50s/PD4EgZBegApaRkeHu7n7u3DmCIPT19ZOSkpqamuh0uq6ubmJiokAg8PDw2L9/P5/Phz3o7Ox0c3O7cOGCi4uLuLj4mTNnoMp36dIlZ2dnwIrhj1dXV5uYmIC6M3fu3Li4OEw9pH/A4XDAgZo3b15YWBg+NTY2jouLIwjCxsYG9gCI8zVr1gA7Pn78eLAwDx482NXVBTE4hL+QQI6PjwfdjMvlLly4MDQ09KuwChaLxWJ19PAZjw8FzldVVJiq6pmUsnfjMs2fRowYJWEempp9+WywtZy0zBTxqXYRV2/d2rt8pvhkOzcfD+/5ctITR/004udfJxr678j5IuT//nlBBRGiEF5eXpCMXrNmTUxMDNUedHd3R0ZGbt68efv27aNHj46NjWUwGGvXroUTgLkSt3djY+OKFSvAxlm/fr2dnR3OFekfkJsFBARgmZyWlqasrDx16lSEaMLCwkDBjIuLI7krsbGxlpaWyMFERESQ9iAhIcHExAT6ozExMUZGRhwO58SJEy4uLl1dXcnJyaQ92LVrl4GBQXt7++bNm+3t7U+ePKmnp0en0zdt2gSxtu7u7vT0dDExMQMDA6pz8P79+8jISF1dXXDWkDzADUkGbcjXMjIyHh4eZP5AVVVVUVERUd8pU6YoKCiIiYkpKyuT+QMOh9Pd3X3t2jVZWVl7e/vBgVy4GllZWaqqqpj9tbS0QD7AaubatWuwB/n5+ZMmTQJ6jPQPAA8wNTVFlQom+jNnzsjLy5M/bWdnd+PGDUtLS9wGfD7/zZs3A/RNZWRkWBR9UxMTE1RMpaWlaWpqlpaWFhcXp6WlzZw5Mzs7W0lJ6enTp9BW6urqevz4sa2t7aNHj/75z3/q6ek1NDTcv3/f2Nj4xYsXSkpKkIUH/r20tBT28vnz5/n5+Xjx6tUr+DRkwvnVq1dVVVWfPn16/fo1KXg3adIkSDP94Tz8N7AHiN4oKCjk5ubC+c3NzZWXl8/JyaHT6UZGRvn5+b29vTU1NWZmZhcvXoSQp7q6+osXL6CoNXfu3Dt37iB4bWVldfv2bSaTqaend+PGDVtb2/z8/BkzZty+fVtLS+v27dvApaGiWVtbe+zYsc+fP/9q6dFQ8aIrV65wOBwdHZ1r164JhcLGxkZzc3PSGMBROHPmjEAgoGrbEQRBGgCUN8yYMQNmAP6BSCSCfh+qQlVVVRMSElCJqK6ufuLECRQmCoVCKysrEHXgc0CFtK2tzdDQ8Ny5c3Z2dunp6YGBgfv372exWHZ2dsePH1+yZMn169ft7OxSU1OdnZ2BgkGNiq2tbWRkJISLraysBseLWP0i+PPmzYuOjsanJiYmsAekf4BVGEpZIBNfU1NjbW2dlJREEASef3yXIAh7e/sdO3b4+flt27YtNDR069atq1atQrnRV+6erl5R8cnYjdGhJ9+8P5ty7OKVvIr7my1cFy5P+8D6dCEwNmb9xbLK88u1NNSXHCtqzNtpL/ejxLz1V0ro9dejrVydvQ6+YDKZ7ZwBtgbnE7JiS5cuhRR2cXFxc3PzmjVrYA9Wr1594MCBgIAAJpMZHh4eGhqamJgYHx+/ZcuWlStXxsfHg3yAIAOwydAdi4iIGBwvwmYxMTE2NjaIz1ApmHl5eaWlpR0dHSKR6PDhw4hKS0lJ/fjjjyQFU0JCwtfXF1mBAwcOYNUPhWpXV1eCIJDGWLx4cWpqKtUeIF4UHx/v5OQEcjL2gJjSyZMnvby80tLSRo0apampqd4/NDU1p0yZYmlpSWpfQ+Vw+/btgDgyGIwdO3aoq6ujUgtcLLgR1dXVsbGxNBqtuLj448eP27Zt09XVpdPpZKYBKtZaWlqgb86ZM2dAkhmLrZMnT5qamvL5/LNnz1pZWQ2wB+rq6tCPAzK2qKgI/kF+fn5BQQHiyV++fGH1p6bv37+voqLCYrEQFDp+/LiOjs67d+8wLcC5oeqbPnz4UFFRkapvCmDqw4cPjY2NkeZRUVGxsLDAYwvCVVVVFZ/Pf/v2rampKS6xnp7enTt3bG1tsf2TJ08UFRUbGxvBRwOkfdq0acrKyvLy8pMmTYKjACKblpYW7kwajUan04l+UBpel5aWysrK/s+xB0DiyMvLFxQUsFgshBqeP3+OOtSsrCyUMJubm9+5c8fe3h5nE1QAExOTN2/etLW1GRkZPX/+nM/nv379uqamRlNT8/jx45ibWltbFRUVHzx4AANOtQd6enr/+Mc/7t+/Ty0TYn0zXqSvr48MgZKSElbrNjY2J0+epBqDtLS03t7e2tpaUu4U9UWzZs06f/48i8Vqbm5mMpn6+vqYykl7gHsOaQNjY2PsnyCIOXPmHD58GHMuMtWJiYkogdfW1kZUhyAICHTb2dkdPHiwurqaTqdbWloCMABmk6GhIfCHAGQKhcLAwMAxY8aA15qTk+Pr6zs4XoRzQhDEwoUL8SlKOI4cOcLhcIyNjbdu3YrJDmqg1dXVNTU17e3tbm5ugYGBKIIaAOl0cnJKSEjw9fVFuWR8fPzy5cuHLDHq6BG2Pj0QaDlVWsdnU8ab9g4B50nCfB/fkMwqQtjZUFf9pbGt+nrsPEMzz9SPncUHXM2NHZIecQiC/2yHwxKvgIuVhIg3yPEQCoU7duyQkZGB6z1q1Cg5OTl5efmjR49GREQgf+Dj4wNJ1+DgYHt7exg5Doezdu3awMDA+Ph4AM6EQuHBgwcRepo2bdqePXsOHjw4OF4kFAqPHj06YcIEbLZjx47z58+TFExpaenAwEAqBbO6ujoqKgoUzAULFiCugqoh+AfGxsZgtEVFRQFNQxDE3r17Fy1aRLUHZLxo3Lhxnp6eaWlpMAMkMhOpnaNHj86YMePdu3ekf1BYWBgdHW1oaIijws1JEMSpU6dmz56NnaenpwM3xufze3p6mEwmDi8vLw9uopSU1PTp0728vEBAQhqM1U81wGR34sQJXV3dAfZAIBDcunXL0NCwtrb29u3bM2fO5HA4mZmZ6urqpD3Q0dF5+fIl6Y4g9AcQNE6yoqKitbU1SowEAsHt27dVVFSwdsEK6caNGxYWFtXV1STUjMxnUO0BAjsI2Obn51tYWIC7aWJiUlZWVlRUdO/ePTMzMy6X++jRI2Nj49bW1tbW1vfv32Pqz8/PxwOL4snc3FxZWdnGxkb4B2VlZVjyV1dX3717d+LEieBlIuZWVlbG4/EKCwunTJlSXV1NgtIaGhoIggA/53+aPVBUVATkGkTM+vp6NTW1W7duoaqBxWJVVlaidig3N7eysnLu3LlKSkqg5TQ0NJSWluKa2djYjB07dtSoUcrKyr/99tvr16+FQqGBgQFwmGhrwO9yOJyioiINDY27d+8O9g8Q5Kmrq5OXlz927BiDwVBVVc3OzjYwMDh+/HhTU5O2tva1a9f6+vogcw0mmo2NDTmJOzo6nj17Fl4C7IGWlhboVPfv37e1tT148CCfz+/t7SXtAat/FUOWGHE4nL6+Pl1dXVAzsaqi5g+MjY3BRENIjcfjGRsbp6enR0VFoUwL0FoclaOj44EDB9zd3Q8dOoREN2qoCgsLnz59ymKxQD3DFGNsbIylPU4IQRDW1tZhYWEQiIYPGxISMnHixJ07dyJrsnLlSklJSYQOaDTa2LFjJSUlFRUVJ06cSPY9wI8GOCEoKCg+Pn7VqlUpKSkhISEhISFfDxmx2Zx2RgO96XPWrqWGk9W8dz0rfbnL3ntpSGY10cf7dD3G11xVSXrir2Imgecqu0v2u1jaeO7L7yEIzv14O2+vgIuVBDHYHnA4HNw5dDrdy8vL3d0d6DTUF0VHR8fGxq5evRppvV9++UVKSkpKSgp5jpiYmMDAwE2bNq1cuZIK1ES+HRP0/PnzcSYDAwOdnZ1xjbDZ58+fsVlcXByZGwgJCbG2tib6KZhCoTApKWndunUg2qempnp5eYGmAv+Smj8gswUomurs7KTGi3bv3q2vrw8w8tKlS9PT0/X19an2gMPhYGYfOXIkyRNVUlJSUVGRkJCwsrIiiWadnZ0CgSAlJcXCwkIgEMDY6Ojo9PX1kSrciEN+/Pjx06dPW7ZsQYlgaWlpWlqavr4+KaIObykzM1NWVtbOzm5wFydulfPnz7u7u585c8bIyIggiKtXr2poaCCqlpWVBf+gtra2rq4uJSVFT0/v7Nmzs2bNysjIQIlnTU0N2VAGTrKiomJvb++NGzcMDQ2rq6sFAkFmZqahoSH6EqgHMMAekEfV2tpaXl4OIGhhYWFubq6ysjLgCmiYraio6O7u/vTpk4KCAlkDpqqqigrUOXPm3Lx5U0dHh06nY3LAkn/WrFk9PT1VVVW//vqrgoKCsrKykpKSvr5+e3u7QCD48OHD9OnTm5qaAEpTU1N7/fo1ihW1tLS+3VhHvef/Bvagra1t0qRJkpKSeXl5zc3N1dXVenp6o0aNevToEewBlvPz5s2DG6WsrPz48eP3799XVVVVVFQYGRm9fPkSGLW6uroZM2acPHny3bt36urqqOQpKirS19c/efIkl6Kh39HRYW1tnZmZOVRTgkAgQJnQw4cPCYJQV1dH5gB57Js3b2LyQusvnU7X0tJKSkpqaGjAURUWFmpoaKSlpWFa7+3t1dXVFRMTu3btGoPB0NLSysjIwOM6c+bMY8eOYbpEiZG2tjZKj5Bu1dLSOnjwIGkPqPkDHR0dfATmGkEQenp6e/fu7erqsrS0jIuLKyoqMjQ0hHtRX18/f/78TZs24Xyy2WzQN1euXKmsrPzw4UMXF5eUlBQclY2NDdwInA1YqYSEBIIgUE8Cf6ijo8PR0RGRJWtr65CQEBJIWVdXByfJwsIiMjKS6CdKLl68OCgoiMfj8fl8Nzc3vOZyuU5OTrGxsV9xEbi9wvfpW3bu3p5dUXlrs13AxoTrGYecvVxXnv5cmbHa08su4uz7orNBxjpGDtuflN/fZDVH32bjLTpP0Pk4yd7DyfPAcyazvZU14CKjRw+T2urVq11dXVksVk1NDU5sT0/P2rVrFy9ezOPx1q5d6+rqWlJS4uPj4+fnh+jc6tWrFy1aNAComZKSoqysvH///oSEBPQuwHiQ9gAUzAMHDigrKycnJ4M8g+MJDw8HQ41OpzMYjK1bty5cuLCjoyMxMdHOzo7P52/ZssXDwwMUTOL3+YPo6Gj4BwBDEgSRnJyMCRTWAq/ZbHZ7e3t8fDx+iLQHuC4HDhzQ0dEhsc8AVCQnJ+vr68M/6Ozs7O3tPXDggK2tLfKlRD9KkyCI8+fPm5mZoQUhJydHRkYGTwoyYcrKyuPGjfvHP/6BFD01nwya2OB8Mi5QT0/Pvn37jIyMSktLCYJAQwBqbNLT09XV1VGWcu3aNUtLy46OjpycHHV1daB7kBhoaGjAb/X29l68eBElghYWFg0NDX19fXhqQPXBZuQBfNUesFgsPp//6dMnZWVlRNXMzMzKysoKCgoYDMadO3dMTExY/ZyP+/fvq6mpvXz58sKFC9OnTwcb9dq1a9ra2i9fvsQEgsnhwYMHCgoKFRUVHz9+lJGRKSoqorIwITQC9xSFp0+ePMEBvHv3jsxL/+E8/PewBy0tLUAoo6vT0NDwzp07dXV1RkZGt27dIomMBQUFcGPz8vIqKystLS1Rsn337l1yG6x2TU1NVVRULl261NHRUVNTY2Fhce3aNXt7+8zMTKq+BUm8GXzAaDU0NTW9fPkywiA6Ojo5OTna2tqpqamNjY2s/lsHVRDOzs4gXMvLy5PUtnHjxv3888+3bt1C5aWJicmRI0daWlqsra3T0tLQbt3Q0KCvr3/27FmhUIirZW1tfezYsZ6eHvS5NDY2GhkZoT0N9sDMzIzKyEROAlWtDAbDzMwsNTW1q6ursrLS09NTVVU1JSUFXryrq+vRo0eXL1++e/dutLP6+/vTaLTDhw8DA6mvrx8VFYUpRl9fPyIiglywi0QiZ2fnmJgYaqcSWngMDQ2Bobe2tg4NDWX1AykxWCyWpaUl7AEWj2TKoaury9HREXkIgiB8fHxWrVrVOZgEyxWISi+FuswUl5JXlDNdmphT012dFe6mISE13W+Jj5OL8RSa8lzjOTM0p4tNmiozdZLYBLGJ8o7Rl0qF9DsxHjPEJ8u6Rp15w+7j/e5Cs/v7k5uamiIiIiQkJODZbNmyhSAIHo+3ePFiT09PPp9fW1u7YcMGVVXVNWvWoF80MjIyPDw8KSnJz88PJ2f//v00Gi0oKAhn0t/f38rKCmfS39/f0tISZUipqak0Gm316tVYGyYnJ5MUzNGjR8OEpKWl0Wg0Pz8/rBw3btyIHDKPx9uzZw+NRluzZg3iQj/++CNJ0CRbHHAAW7ZsIfHIW7duxac8Hm/v3r1OTk6Yynfv3j1nzhzSHmB9TfR3JsPn27Fjh7a2Nm5OLpd78OBBGxub1tZWRFfQ7GZoaNjU1LR9+/Zp06b19fWh6nTLli06Ojp1dXVbt25VUFCg0+mpqamzZs36+PEj9Yn7Rr0p6R84OTldvnwZ/Rw5OTkk5HLixIm6urqvXr2i0Wjm5uaIn9y4cUNBQQGOVFZWlqysrJWVFRoMr169amNjgyxgQUFBTU0N2UBeVlb26tUr/Ch5AJimZWVlB9gDpFKoUbXc3FwlJSUajaanp1deXo52BxTQZ2VlKSkp6ejovHnzBtEkS0vLW7dumZmZlZSUQArl4cOHpqam6Ha+fv361KlTi4uLSRZmZWUlZDPevn1Lo9HU1dVLSkq4XG51dfWLFy/k5eVnzJhRVFT0PQpgfwN7wGKxkK9nsVioPX348CFikeXl5QYGBsgns1gsKysr0pOl0Wj37t2rra0tLS2FjcUwNzdXVFS8f/9+XV2dpaXl8+fP7ezsrly5IhAIampqjIyMHj9+TPYfDKUBh+WzlZXV+fPn+/r6HBwcZGVlb926BcZydnY2HjzqXwfNAypAraysrLGxUUdHBxoVbDa7rq6Ox+M5ODikpqZiGbVw4UJZWdmLFy+i2Z3P5yOk09vbC54lyjnOnz+PbDmbze7r67Oystq1axcYmWZmZvAt+vr6fH19ZWVlT5061d3dvWLFCiUlpfT09MbGRldX16tXr/r7++/YsQM1sgsWLMC3ampqPn/+3NraShDEmjVrJkyYgIAPMgSSkpJnzpwhi0Q5HM7KlSupvEkcnpiYGAJQfn5+5Kw6YIN9+/ahRsXf3z82Nrarq0skEq1atWrDhg2w0Gw2u6Ojw9fXd9u2bYMAnGw2s5Ve96WirPRz2ZeGpnZOB7uVUf+loqy8pq6hvr62vOxzReWX6urqyvKy0rLyysrKysrqOkYbm93WVF9dUV5WVUsf5B+Q+QNZWdmYmJiWlhYgw8Au3717t7i4eGJi4qlTpxQUFKKjo1Gev23btn379i1ZsqSzs7O7uzskJGT16tWQ+iCBmkePHhUXFwckmeQkR0ZGkptBI4EgiPj4eEdHR1QuREVFubu7I5qPbbhcrkgk2r59O+iYAyiYu3btsrGxwXc3bdrk6OiIM3z+/HlZWdmlS5fCAh07dgwGQCQSnThxwt7eHutukUh06NAhGxsbnG2RSHTkyBFgMsnzc+PGjUmTJjk7O4Odee7cOWtr67a2NhgDVv9i6MKFCyg0srW1FQgEQqHw8uXLtra2HA7nyZMn0tLSiGv19fWdPHnS0dFxKC7mgCEQCLKzs01NTZF3PXXqlIuLy927d3V0dFCwcPr0aX19fTabjVQ2vL3bt2/r6OhgnmWz2cgA9/b2UnmZd+7cUVRUpN6oNBrNxsaG7EfD4PP5JC+T+j6Px/vw4YMSZejr64P+hmwztkEGGI0LDx48gG6CoaHhx48fUa1kaGjIZDJLSkr09PSKi4sFAkFeXh6qA6gsTAMDg6KiIkVFRQ0NjcLCwurqaqyZ0PlfXV397NkzAwMDeBLfPqV/D3vAYrHgdGM+xczOYrG6urqqqqrIwCIEKsiBorEB0R5sg9u0qqoKDgerHxGFd77nXmRTeJnYJ3ZSW1v7Vbm6weJ3SAtTJeTQFwNrjysKZCaTyST1YUhqJhIY+Evb29vJK80egpGJ7UlsMvmax+PBb4AcuNnfAAAeUUlEQVSyBRTrUBvKppA14V5UVlZWVFQAA4nXgLmT1wgYYepVwJb4GxsbG/H1oTbgcDjV1dWosscBg19P3T8q/wZdD/SZcbncrs4ONovF4oDa14nOMy530AXoosL9ur4C9SPzByQvE1/soEAxETsiN0B9KgnU7OzsRIUSu18rheRTDgZqQnSI3IzVX/CKPUNs7qsUTKQc2IMomEMRNKlQZTYFlsn+PTiT/Xu+5oD/svpXwegVxZ7hKA8I7KARF7Mh9RiQocUe8D4iwwDf/uEDSB4SIuOILAFyWV9fj453FosFMCq42ayhCZfs3/MyYScGjMrKysEHQN0b9X2QMqnfxfNOFS8iaZpY7VVWVqKyA0KTHA4HTE2ck86hWZgVFRXYVXl5OW5z6pGAqVlRUdHe3v6Hp/RvYw8w8EBSb5euoTGZX72run4PvGT30+bIT7/qEHx1kBt3DQHR/FM7+eo72DNnCNlqUm3023sYsD3+S32Nbaia0l1fI2gOVl0d/NNf3WbAj351fFXaerDM9f9l4WtShXTwj3b0czQxBWODjv7x3wZqDt7yv62hPeC75EzE+b2KNfWjjt+DMwf8lzME7ZIqXPrVwA6nX9CUegxd/UzNr77/nYMzCMY5+J1vfGWo99nfIS5NbjnU+9/zXXxK7of9NeHrAW9+9cCou/r+g/zqSfg72YPhMTyGx/AYHv+HxrA9GB7DY3gMj+HBYg3bg+ExPIbH8BgeGH8ne9D1/xPhkvV9WYE/3Oa/l5z4zg2+uv33RPzJLalphqEuwR8yLL8nvv+NLMKASP1/KlswYD9QGx68zYA3v7oZ6/uYlx1/hlL5neM/spPhMTy+Mf4e9gCzf21tbVtbG5fLJV//N0zC4DofJFuo/x38rT8EaqLyZ6hmBdbvIZcDjmHwBI3KogFFbNTB5XJRFETWfgxGXaJchMSZkXSar/Z5gs2EMiTyNXUbTI5UuOZgOib7O8iaqJkZcFTUfgX8NGAJDAajpaUFKrDUHCxVAfcP7QrOAymmTRbtDD5Xzc3NKCJChQmdTm9qaiLfoR7/YOYl9Up1dXWhKYz8RSr/8g+PnJrpJd/8NhdzeAyP/8j4G9gDJpMJsZ1Zs2a9ePGiubmZwWDMmjUrLy+vp6fnz/4QIIVUFCUU4oaCXHI4nJ6entmzZ0PaaPCqHM+qQCCwt7e/dOmSQCCgwkvJGYHH4xkaGl65cqWvr49kapb9noWJORQtxy4uLunp6QP2xulnlrHZbHt7+6tXrxL9OnEWFhZA4nD7y0OFQqGzs/PUqVNJdImysvLEiROplB4MkUgEeQzAKe3s7AZQM1H6yeVynZyc9u7diz/c2dl5165d1M0IgnB2dk5ISECNPJWsSRoY9LhBk0fx90NZWVlCQmLPnj0gUDIYDCcnp+DgYAaDgRYq7JC0GbCCZb/nWZKvyfkXOhmhoaFkX9WqVavQE0A98nXr1vn6+oJgg8alkJAQb29vKtMGOhDh4eEBAQEEQaBbDT9K2mZYsujoaAhXQH4uOjp62bJlRD8uDUblqxaxrKwM4pcDtmEwGNHR0Y6OjlQuJrb8s4/A8BgeQ42/uj1AK6O1tfWrV6/U1NSeP3/u7Oycl5enpKT04sUL4rsJlywWC6WBFhYWMjIyUNECihJC5/jv+PHjc3NzqWpFqKrW0NC4detWX1/fAEeBNCSVlZVv375VU1M7efJkY2MjOQ/CumB2njZtGoDGVlZWYGriAG7duoV+NNJOVFRUfPjwQVNT89ChQ+SkAMuBud7IyCguLq66uhpy3ARBzJo1Kz4+HuXY2EwkEunq6oaHh79//57sk1RXV4ecEfXMEAShr6+fnJyMNmADAwOqEAU2WLp0aWZmpqOj4+HDh8PDwzMyMhwcHKBCAQuEElULCwtooy5fvpzsXJs4cSL60Vj9NGZfX1/yqKjiyXp6emFhYQRBxMbGKigojBs3Diqely5d2rRpE3rZJk6cmJycjNaq2NhYWVlZcXFxfER9nZKS0tfXhxl88eLFoMTAfru7u69evZogCLKEv6OjY82aNRISEpMnT540aVJKSkpPT094eDhUUsaPHx8fH49msaamJi8vL0dHx87OzpSUFHSrSUhIREREoD+8u7t73bp1NjY20OmExmRwcLClpSVMGoPBEIlEBw8eHIorGRYWhvauo0ePUrmY48aNGzFiBJWLGRQUNKg1748fNFTE/qmq6OHxv2T81e0Bi8WqqKgoKCj4+PGjnJzcjRs3ioqKmpubaTTatWvX0Mzy/YRLFosFmJy0tPTVq1dbWlpoNFpOTs706dPPnTvX0tIyZcqU7OxsUs0UzoGWltaFCxd6enogLXfz5k2IJnG5XBMTkylTpgDbqaioOGbMGElJSRqNhmmCRCijAWfatGmpqangJO/fv7+1tbWurk5ZWRnrej6fb2lpSX5dUVFx7NixEhIS5N7GjBlz7do1kUjk4OBAxWFmZWWx2Wxra+spU6ZADebSpUtY6VtaWk6ZMoUUKNbU1Pz3v/+dnp4+2B6YmJjs3r0b9sDU1BRzOnlp6urqANc0NTWNjY2F6rK1tXVERASgXZBIW7Ro0a5du6DYM2/evPXr10OIzcTEJCYmhpQn8vLymjBhAimLpqioqKqqCsQH5mKCIIqLi9+/fw9Bi7dv37a2trq6uq5YsaK1tdXa2hp6DFCjYjAY8+fPX7JkCdwIOzs7b29vyIB3dHTU19e3tbW5uLgsWbKkp6enq6trzZo1kZGRAoGgubm5ubm5s7Ozr68vIiIiODi4rq7O3t7e2tq6srJy2bJlbm5unz9/9vT09Pb2hn3duXMnqXW6bds2LpcL/3Lp0qXQtYZ+w8iRI6E+LS4uHhER0dPTExMTIy4uLicnJyEhERQURBAEqQI0eKCFCvcMKJiw5X5+fkZGRuQ7r1+//npr3jefstbW1oaGhsbGxj/11AyP/yXjL20PIERlaGiopqY2ZswYyJIAlqmnp0cSLj98+PD9gaOGhoba2lp5efnr16+DnHzv3j1o0vF4vFmzZt27d4/0D7q7u+vq6qZNm3b//n2RSMRgMDQ0NLKyskh7ICcnd+zYsdLS0pKSEsQN4CtA0llGRgZ8Gx6P5+Li8vPPP4uLi6Ml/dKlSzAws2fPPnPmDEEQ0C8C1RJyb0DfQQ66qanJ0NAQGnazZs1KSUlpbm5uaGjQ1NQ8fPiwh4dHWlpaS0tLQ0PD9OnTIWD3p/wDIyMjMHAG2wNoSKipqUlISPzrX/8SFxdXVVW9cOFCQEAA4JqSkpJZWVlLly5dvXp1Y2Ojt7f36dOnPT09IyMjsQcLCwsgM/FbDg4OQUFBJAihurqalFAuLi4GvSs0NDQ+Pp4gCKFQGBAQAApQZGRkX1+fp6fnhg0bSPo8QRCenp6QwoYrsG7dOgRq+vr6tm7dKiEhMWbMmDFjxhw+fHjDhg1ubm7w27y9vf38/NC9WVtb29XVFR8fD9q2mpqapKSklJQUjUYDow3pk5aWlvb2dl9fXzc3NwgR19fXs1gsX19fDw8PHMDq1asdHR0R61++fLm3t3dSUpK/vz+TyaTT6X5+fo6OjrjcQ3El+Xw+um0JgsjIyCBtuYSExOjRo0nrDmk/KgdxQHfY4Eesp6fnzZs327dvj4+Pv3LlCqkqMTyGB8Zf2h5gAHwmLS39r3/96/Lly1++fDEyMrp+/Xp5efmUKVOuXLlCDRkNRbhkUeJFsrKyP/74I1biP/300/Pnz7W1te/evYvdkqalu7u7trbW2Nj46tWr0NrU1tYG8JLdrxmgp6f38OFDOzu7u3fvEgTR29vb19eHrn0ej2dkZHT16tW+vj4ul9vW1qaurn78+HGCILS0tDIzM+3s7LKzs01MTM6cOQNJ4aKiIiwPIVMFbQaYltra2nfv3kFwUVtbGyaEIAhLS0sxMbEzZ86QJEU9PT3YA4Ig3N3d5eXlqXRDnDEsrskz39nZaWlpuWPHDmjmGBsb79q1i+ofIGZlY2Pz008/xcXF1dbWenh4bNq0qb6+3sDAYP369Twez9vbW0ZGRlJSMiEhgcvlenp6jhs3DmJqI0eOhPPB6mfdbN68mc/n48/kcDhRUVEaGhoqKiqQ6a6vry8tLbWysgJZfsmSJZWVlfb29klJScHBwcHBwRBZQrp1KHuAmbGjo8PBwSE0NNTPzy8qKmrXrl1SUlLgikCkeuPGjVD+IQhi2bJlDg4OQDkCzb1gwYIVK1ZAjaqhoQGKBcuWLVu4cGFPT09CQgJW/eLi4uHh4aDQrFmzxsfHBweTmJg4atSokJCQxsZGhPUiIiJcXV27u7tJoTQy80F9jcRAU1MTbHleXl5JScmyZcvmzJkDxAr8A6p6BMSLysrKoGs04ObncDhMJrOlpaWtra21tfXu3bsQTPyPPLzD43/M+KvbA+j5AC4hKysrLS1dUFBQWVkJzMX06dPz8vKo4X5MoO3tg2C4/QPxInl5+WvXrrW0tMA/gD0wNDS8ceMGtHZhDIyMjDIyMoCygaOQk5NDjdjW19dzOBwVFRUwcGpra2tra62trWk02pMnT/AEQpOHwWCAYtbS0qKurn7jxg19ff2rV6+ampqS/sHixYtpNBpYSAg3gYiJsLKCgkJOTg5BELq6ugjLNDY2zp49e+fOnX19fW5ubkeOHOHz+Xp6eocPH2az2eXl5e/evcvLy3v69Gl+fj75oqSkpLy8nCwNEgqFdnZ2hw8fdnV1PXz4MHT6kpKSSE0xGD8PD4/Tp08vXrx44sSJaWlpdDrdzs7u3Llznp6eoCCArDl37twDBw4QBEFGkyBnTfUP7O3tk5OTd+zYgRzy5MmTo6Ki3r9/X1hYiNh6eHi4qqrq5MmTp0yZIikpKS0traysPHLkyCNHjgQFBQUHBwNEimRyU1OTg4PD8uXLoRXq5OTk6+sLjVWkhX18fOLi4sLCwgICAthsdkFBwdOnT58+fYpY0Nq1a8nERmho6Pjx46nhtfHjx8PSgKUM0ifiRYcOHYqOjra3t6fT6RUVFUAbEgQRFBTk5ORECpc6Ojp2dXXt2LHD19eXy+WGhYWtWLHi4sWLZOJh4sSJyHxISkriNZlCQP5ATU0NMUM5OTlpaWmAXMDJIvMHuGMPHjwoKyvr5+c3QNwYa5eHDx9euHBBIBCIRKLnz5+fOHFi2B4MjwHjL20POjo6mpub586d+/jxYwaDoaOjc+vWLTK3/PDhw+nTpz958gRypHgGpk2bNnbs2Ddv3pAapQPGUPGiu3fvslisWbNmgYZWU1NjbGx86dIl0hgYGxtDBpVqriCbpa6unpaW1tTUNG/ePDk5uatXr6JkE8Uk3d3djo6ONBoN8SI5Obl//etfjx49AmnZyMjo1KlTSEUCO/7mzZuSkpK6ujpVVdV9+/a1tbUhrlJeXt7c3NzX12dmZgZON/Z5+fJlTMd6enoXL160trY+ffr0unXrZGRkVFRUVFRUMOcqKCjAUVBRUaHRaJcvXyZ1K8F+WLBgwdGjR318fA4dOrRw4cIDBw5gouzr61uyZMmuXbtYLBbyyX5+fpcuXXJxcTlw4ICHh8e2bduQm3VwcAgODgZZE5RNnKXB9mDjxo2NjY3IIc+fP19CQkJTUxNMHkz0hYWFwBnm5eVBedjOzi4iIgLZ4JiYGJFIFBsbi1ny119/HTNmDHwR8rWMjMyePXvYbLa3t/eOHTvWrVsXHR29d+9eFFwBNxYdHU02shAEsXLlSgcHB2rI3tnZGf4Bh8NpbGwsLCysqqpaunSpm5tbd3d3YGCgl5cXQRDd3d0tLS3QLt24ceOvv/5KqkwHBgYieLVq1arg4OCEhAQ3Nzcul1taWspgMFauXGllZYXMx6pVqywsLBgMBplCgFtWVVXl7e2tp6f3+fPnkpISf3//BQsWQGwVm+EiJiUl2djYtLe3x8XFOTg4kNVTcKSeP38eHh5++vTptra2tra2hw8fnjt3bjheNDwGjL+0PWCz2Uwm882bNxUVFdOmTTt//nxzc/OXL18YDIacnNyzZ8/U1NRIeWrYA01NzX/84x8vXrwA9pI6vhEvIpk2srKy2dnZIpFo7ty5Fy9epBqDjIwMUJqpTQaQTpw9ezYSv9euXYMuN4rEyfX1ly9fGhsblZWVjx492tTUpKenl5GRYWVlhX8zMzMRCEb0g3wHKBsmk0lyApD81NXV3blzJ51Ob2homDVr1rFjxxCdMDc3z8jImDdv3uHDh1ksFkxLUVERSnWpiYQPHz40NzdjKkHy4Pjx43Z2dqdOnQJO2c7ODuVGOG+FhYV0Ot3W1jY0NBQSjFwu19zcPDU11d3dffPmzQRBrFu3bsyYMVOnTlVTU8vOzvb39/9GvGj37t179uzBGvy3334LDQ0tLCx8//49qjYJgggLC4NboKysLCUldeHCBX9///DwcIIgXFxcMMnW1dVBi3vBggXIJ9PpdEdHR19fX2B4Ozo6QkNDly9fzmQylyxZEhUVFRIS4unpifnX2dnZ398fZ54sJB3sH5BlowRBREZGbtu2bfPmzQsXLuTxeCtXrvT09MTJj4yMXL58OfwDR0dHtDisWLGC3GDDhg1BQUEJCQlA3+Bao4SU3AAf9fT08Hg8JpPJ4XAIgrh06ZKcnNz48eNlZGQ0NTXDwsJYLBaTyaQuTUQiUWJioo2NDYvF2rhx44IFC0h70N3d/fbt202bNkVHRyckJOzZs2f79u1Xr15F2dv/wUd6ePwNx1/aHnR0dLS3t5uamo4ePXr06NHKysrjx48vKSnp7u6eM2fO9evXDQwMqF0IHA4HRZ+5ublD+QdYa0tLS2dkZDQ0NCgqKsI/uHDhAp1Onzlz5v3793t7exEpBuHL0tISE7RQKLS1tb169SoJ6YQnrqGhcfz4cdIS4KO6ujqy8wuOgp6eHpbAHA5HR0fn3LlzVlZWJ06cAEkVzydBEGpqaqg4MjY2njhxImIFMjIyt2/fFgqFA/IH+vr6qampBAWHqaenRwKTbWxssKWNjY2EhARZ0pOVlYXZGbEgCwuLs2fPLl68+MiRIwsXLjx9+rS3t3diYiJCRn19fevWrRMTEwNcU1xcHFF+Nze3PXv2eHl5paSkiEQiiDy/f//+6dOnTCbT3t5+/fr1mBbNzc3Bt2H155NDQkLKy8uxBndwcBAXF1dRUZGTk0N+BdsEBAQg3GRjYxMfHx8QELBq1aqmpiY3Nzf4BwAMCASCxYsXR0dHfzV/wGQy16xZk5iYuHbt2qSkpKCgINQmEQTh5+dHzQ00NTW5u7uT+QMkt52dnd3c3JqamhB6Wr58eUhIyP79+3/99ddDhw7Fx8eDgNbc3Lxo0SKgkqn5g/DwcBBskINBvAibdXV18Xi8devW+fj4IPEQGRkJ20A2r6GRrbi4+PPnz8uWLdPV1S0pKamsrNy0aZO9vT2LwmZhs9lcLpeMF6Eomfyoo6Pj2bNnYWFh8A/QujisCjM8Bo+/tD1gsVhQ7tbQ0MjIyMjPz1dVVc3PzycI4s2bNzo6OhkZGVyK1DCTybS0tLx79+431CwEAkFjY6Ompubr168JglBSUsrJydHR0YG7cO/ePW5/x3JnZ2dNTc306dP37t1bX18Puf/Xr1+rqqpevHiRmlVWVla+desWQRBwC7q7u/v6+gwNDTMzM/v6+jClGhgYnDt3ztTU9ObNm1wuFxEqHR2dmzdvOjk5ZWRkCIVChB3mzJlz+PBh+AEHDhwg40Usin9A5g9I/4DJZPL5fIIgtLW1UUHEZDL19PSSkpIEAoGJicn27dtJUCUJVECgPyEhoaenp6enx8LCIj4+vqenp7Oz09TUFJkATCjz58+PjIwsKioyMTFBJVJDQ4O9vX10dDROF8iaa9asUVZWzsnJ8fDwQHcC0Z9AJig4zFGjRsEyqaqqjhw5cuPGje3t7dXV1VVVVU1NTXAC1q5di0u2YMGCpKSkyMjIsWPHysnJbd++nRrkWbZsWWBgIK4aQRCenp7oLWCxWEwms7e3t6mpadGiRatXr25vb1++fLmPjw+C++7u7vAPhEJhYmIigC1jx44FuxEBpbFjx4qLi8vKym7dupUgiICAgBUrVqxfv97d3R21A8nJyaQTExERMSB/4OfnB/+AdP7Wr18PKll3d3dUVNTSpUs7+gG5YWFh+Cg+Pt7T0xMIo5MnT0pJSSGJgqYZJSWlkSNH/td//Reqrcgbm4ThAGxAvedxlz548ODChQu9vb3DzQfDY6jxV7cHLBaroaHh1atXenp6SkpKN2/ehIUwNzfPysqytra+ffs2FaAImMZQt3tHRwfKk7Kzs8EkmTVr1qNHjzQ0NM6cOUP2oLL6xdCtra1HjRqFIDUJuRw7duyIESNIdDOqjKhtaOXl5WSxKQqHGhsbZ86cmZOTM2/ePBCgzp49iwLTU6dOzZw5E0jLpqYmKyurixcvurm5nT9/XkdHZ//+/WS8CElLoVBoZGQ0fvx45A9++OEHMuxeW1tLp9ONjIxOnDjBZDJtbW3PnDnj7e2dnp5ubGyclJTE6gdVVlRUIDLT3t5uYGBw5MgRJABMTEzI2iRbW9u4uDjMs3Q6vaqqysfHR1VVdefOnUjXe3h4HDp0yN/fPykpqbOzc926dTQabd++feglNjExCQkJwbRobGwcFBREBtAcHByioqJQgN/Y2Ojs7BwdHc1isdrb252dnZFp8PHxGTVqFMJNP//886FDh/z8/Pz8/BgMRnNzM6kLz+FwnJyc4BywWCx4LWg9Y/UvnwMCArZt2xYYGJiQkLBx48Z///vfZBQLsSAOh0P2Obu7uy9ZsgSAYldXVxcXF0yy6GYICwuTlJQcPXo0OiG+fPlSVFQEZ+LFixcVFRUEQcTExIwYMYJMZpAuCHrZgoKCgE6LjIz08vLC/cNisUQi0ebNm2FIVq1aNW/ePASpmpub/fz87O3ta2pqVqxYYWhoyGAwNmzYMHfu3Orq6gFPyjfqTVFf9J2sp+Hxv3b8pe0B+g/09PQUFRWfPXtWUVExd+7c/Px8KyurW7duCQSCiooK8DLJkNE3PAPs1szM7Pr16wKBwNLSUkZG5tGjR93d3dra2o8fPyZ+D7lksVgoARwAuaytrdXU1ERXGqufEmVjY0Ol66HV+d69e1j1I27T09PT0tJiaWmZlpbG5/OxoHNwcJgwYcLt27chFJGamioQCFpbW52cnMTExKj1RTIyMnfu3EFuY+/evY2NjfX19cbGxkhHCwQCb29vWVlZVMS6uLjs2bMHlVceHh5iYmKTJk2i7urKlSvgce7Zs6e7u1skEnl4eKSkpICHjKnW2dk5NTUV/QeKiorgQi9cuPDChQtr167dunUrn8/HZgcOHAD3nOweGEDWlJCQSE9PFwqFy5Yt27RpE0LkkPro6upavXq1rKwsjUYbN24cNDB8fHxQptnY2IjAVFBQEEwFeXsIhcK1a9dGRESQF10kEi1fvjwsLAzRc6FQGBISsmbNmu7ubn9//02bNsXFxa1cuRK7Xbp0aXBwMLZEeiAuLm7dunWoESAIAt8lY/0bNmwIDAxsbm6OiooiqZ9ycnIkE3HLli0ikSgyMnLRokX4iTVr1ixfvhyt1Pv375eVlQ0JCeno6EhISKAaA1Y/sWTXrl0oOgoICIB/sGfPHh8fn66urrNnz06ZMgUOTU9PT3x8vJ+fH9U/+J5HbNgtGB7fHn9pe4BRUVGB3GB3dzfomHACOvoJl1/lUw41kBiAkwFwJtqRvtquOVj8rru7G01q1B/lcrkkupIcQPdhbq2srIQ4HdnRir8RXyS3BAsTmwFOWV5eTqVLYn03AIdJivngGMDOxD5J+OXgXTEYDA6HQ26GpDd4meQfBWomh8MhKco8Hg9eSE1NDZp7uVwuCJGkwhJ7CLImdkXiMMmTzO2nbGJLFMI2NDRAyQ4QSuSKB4jQ4cCoQE3276XrsAEA9w0NDdgJJOp4PB4CbuQOORwO/l7S+cCcTu4Kfya4lYOpn6WlpWgaaGxsZDAY+An0DGIiJvnJXC63vr5+cFSnq6sLVUOgkOJb9fX1dXV1XC4X7iyOp6urq7m5Ga0b33nbD4/h8T3jb2APqMJwXyVc/ikXmNz+Pw65HChT+fsuua8CLFm/J2IOJmUOGF/djKpT/dVtvqF6TeViDmZkku98G675VarlUL84lEo2uRn5iwP2/53y2kNJW+N9qmT0HwpcD/XfoaRJyTzWVwmXHRQw8lDK1eSeB++B+vVv7GF4DI//L+NvYA+Gx/AYHsNjePxfGMP2YHgMj+ExPIYHizVsD4bH8Bgew2N4YAzbg+ExPIbH8BgeLNawPRgew2N4DI/hgTFsD4bH8Bgew2N4sFgUe/D/AAFY/xehHdxYAAAAAElFTkSuQmCC" alt="" />

1.返回一个新的数组,包含从 start 到 end (不包括该元素)的 arrayObject 中的元素。

2. 该方法并不会修改数组,而是返回一个子数组。

注意:

1. 可使用负值从数组的尾部选取元素。

2.如果 end 未被规定,那么 slice() 方法会选取从 start 到数组结尾的所有元素。

3. String.slice() 与 Array.slice() 相似。

我们将创建一个新数组,然后从其中选取的元素,代码如下:

<script type="text/javascript">
  var myarr = new Array(1,2,3,4,5,6);
  document.write(myarr + "<br>");
  document.write(myarr.slice(2,4) + "<br>");
  document.write(myarr);
</script>

运行结果:

1,2,3,4,5,6
3,4
1,2,3,4,5,6

任务

补充右边编辑器第8行,将选定数组元素"爱","你",并输出。

使用slice()选定数组元素

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>slice() </title>

 <script type="text/javascript">

    var myarr1= ["我","爱","你"];

    document.write(myarr1.slice(1,3));

 </script>

 </head>

 <body>

 </body>

 </html>

slice()

7-22 数组排序sort()

sort()方法使数组中的元素按照一定的顺序排列。

语法:

arrayObject.sort(方法函数)

参数说明:

1.如果不指定<方法函数>,则按unicode码顺序排列。

2.如果指定<方法函数>,则按<方法函数>所指定的排序方法排序。

myArray.sort(sortMethod);

使用sort()将数组进行排序,代码如下:

<script type="text/javascript">
  var myarr1 = new Array("Hello","John","love","JavaScript"); 
  var myarr2 = new Array("80","16","50","6","100","1");
  document.write(myarr1.sort()+"<br>");
  document.write(myarr2.sort());
</script>

运行结果:

Hello,JavaScript,John,love
1,100,16,50,6,80

注意:上面的代码没有按照数值的大小对数字进行排序。

如要实现这一点,就必须使用一个排序函数,代码如下:

<script type="text/javascript">
  function sortNum(a,b) {
  return a - b;
 //升序,如降序,把“a - b”该成“b - a”
}
 var myarr = new Array("80","16","50","6","100","1");
  document.write(myarr + "<br>");
  document.write(myarr.sort(sortNum));
</script>

运行结果:

80,16,50,6,100,1
1,6,16,50,80,100

任务

1. 补充右边编辑器第8行,完成降序排列函数。

2. 补充右边编辑器第11行,使用sort()方法,进行数组降序列排列,并输出。

1.排序函数,降序 return b - a;

2. document.write(myarr.sort(sortNum));

代码:

 <!DOCTYPE html>

 <html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>数组排序sort()</title>

 <script type="text/javascript">

    function sortNum(a,b) {

    return b-a;

    }

 var myarr = new Array("80","16","50","6","100","1");

 document.write(myarr.sort(sortNum));

 </script>

 </head>

 <body>

 </body>

 </html>

数组排序sort()

7-23 编程练习

某班的成绩出来了,现在老师要把班级的成绩打印出来。

效果图:

2014年5月9日 星期六--班级总分为:81

格式要求:

1、显示打印的日期。 格式为类似“2014年03月21日 星期三” 的当前的时间。

2、计算出该班级的平均分(保留整数)。

同学成绩数据如下:

"小明:87; 小花:81; 小红:97; 小天:76;小张:74;小小:94;小西:90;小伍:76;小迪:64;小曼:76"

任务

第一步:可通过javascript的日期对象来得到当前的日期。

提示:使用Date()日期对象,注意星期返回值为0-6,所以要转成文字"星期X"

第二步:一长窜的字符串不好弄,找规律后分割放到数组里更好操作哦。

第三步:分割字符串得到分数,然后求和取整。

提示:parseInt() 字符串类型转成整型。

代码:

 <!DOCTYPE  HTML>

 <html >

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>7-23 编程练习</title>

 <script type="text/javascript">

   //通过javascript的日期对象来得到当前的日期,并输出。

   var date=new Date();

   var weekday=["星期日","星期一","星期二","星期三","星期四","星期五","星期六"];

   document.write(date.getFullYear()+"年"+date.getMonth()+"月"+date.getDate()+"日"+weekday[date.getDay()]+"<br />");

   //成绩是一长窜的字符串不好处理,找规律后分割放到数组里更好操作哦

   var sorceStr = "小明:87;小花:81;小红:97;小天:76;小张:74;小小:94;小西:90;小伍:76;小迪:64;小曼:76";

  var sn=sorceStr.split(";");

  //var s1=sn[1].split(":");

  //document.write(s1[1]+"  ");

  var sum=0;

  for (var i=0;i<sn.length;i++){

      var s1=sn[i].split(":");

      var s2=parseInt(s1[1]);

      sum=s2+sum;

      }

  document.write(sum+"  ");

   //从数组中将成绩撮出来,然后求和取整,并输出。

 </script>

 </head>

 <body>

 </body>

 </html>

7-23 编程练习

JavaScript进阶 - 第7章 JavaScript内置对象的更多相关文章

  1. JavaScript之函数,词法分析,内置对象和方法

    函数 函数定义 JavaScript中的函数和Python中的非常类似,只是定义方式有点区别. // 普通函数定义 function f1() { console.log("Hello wo ...

  2. javascript快速入门4--函数与内置对象

    函数 函数(又称为方法)用于对一大段为了达到某种目的的代码进行归类,以使代码更具有条理: //一段计算三角形面积的代码 var wide=window.prompt("请输入三角形的底边长度 ...

  3. Java Web程序设计笔记 • 【第3章 JSP内置对象】

    全部章节   >>>> 本章目录 3.1 JSP 内置对象简介 3.1.1 JSP 内置对象概述 3.1.2 JSP 表单处理 3.1.2 request对象 3.1.2 开发 ...

  4. javascript中的内置对象总结

    内置对象 标准内置对象 Object Object.create Object.prototype.toString Object.prototype.hasOwnProperty Boolean S ...

  5. JavaScript内置对象与原型继承

    (一)   理解JavaScript类定义 1>关于内置对象理解 console.log(Date.prototype.__proto__===Object.prototype    //tru ...

  6. JavaScript的内置对象(Global对象)

    内置对象的定义 由 javaScript 实现提供的.不用自己创建,这些对象在 ECMAScript 程序执行之前就已经存在了. 意思就是说,开发人员不必显示地实例化内置对象:因为它们已经实例化了. ...

  7. 4月5日--课堂笔记--JS内置对象

    JavaScript 4.5 一.    JS内置对象 1.数组Array a)创建语法1:var arr=new Array(参数); i.       没有参数:创建一个初始容量为0的数组 ii. ...

  8. 5、JavaScript进阶篇②——函数、事件、内置对象

    一.函数 1. 什么是函数 函数的作用,可以写一次代码,然后反复地重用这个代码. 如:我们要完成多组数和的功能. var sum; sum = 3+2; alert(sum); sum=7+8 ; a ...

  9. JavaScript 进阶 常用内置对象

    一.常用内置对象 所谓内置对象就是ECMAscript提供出来的一些对象,我们知道对象都是有相应的属性和方法 数组Arry 1.数组的创建方式 字面量方式创建(推荐使用,简单粗暴) var color ...

随机推荐

  1. Android4.4 GPS框架分析【转】

    本文转载自:http://blog.csdn.net/junzhang1122/article/details/46674569 GPS HAL层代码在目录trunk/Android/hardware ...

  2. Hadoop HA- zookeeper安装配置

    安装集群 1.1 虚拟机: 3台安装好JDK的centos Linux虚拟机 1.2 安装包: 把下载好的zookeeper安装包,官网:http://mirror.bit.edu.cn/apache ...

  3. linux应用之yum命令

    yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及SUSE中的Shell前端软件包管理器.基於RPM包管理,能够从指定的服务器自动下载RP ...

  4. 使用IE11的F12开发人员工具进行网页前端性能测试

    用IE访问被测网站(我的是IE11,EDGE浏览器相同),定位到你要测试的动作所在页面或被测页面的前一页.按F12调出开发人员工具,其它的功能我就不介绍了,直接切换到性能选项卡. 根据提示按快捷键ct ...

  5. find命令的基础用法以及按文件修改时间查找文件

    一般文件查找方法: find 命令学好是一件很有趣的事情,也可以帮你在查找系统文件的时候事倍功半,还可以与正则表达式结合使用,功能强大,是一个很好的查找工具.可以整体提高你的系统管理能力. 基础用法 ...

  6. jvm file.encoding 属性引起的storm/hbase乱码

    1. 问题 今天为storm程序添加了一个计算bolt,上线后正常,结果发现之前的另一个bolt在将中文插入到hbase中后查询出来乱码.其中字符串是以UTF-8编码的url加密串,然后我使用的URL ...

  7. python web server gateway interface (wsgi ) notes

    前言: 注:如果需要得到支持批Python3.x以及包含了勘误表,附录,和说明的更新版规范,请查看PEP 3333 摘要: 这篇文档详细说明了一套在web服务器与Python web应用程序(web框 ...

  8. 【Lintcode】013.strStr

    题目: For a given source string and a target string, you should output the first index(from 0) of targ ...

  9. 【Lintcode】033.N-Queens

    题目: The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two que ...

  10. 实现PIX需要参考的标准资料

    •初步了解PIX V2和V3:"IHE_ITI_TF_Rev8-0_Vol1_FT_2011-08-19"中第5章和第23章 •了解PIX V2相关事务: "IHE_IT ...