CNN是工具,在图像识别中是发现图像中待识别对象的特征的工具,是剔除对识别结果无用信息的工具。

ImageNet Classification with Deep Convolutional Neural Networks

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

http://caffe.berkeleyvision.org/tutorial/layers/lrn.html

【侧抑制】

The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions.

https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/

Why do we need normalization layers in the first place?

A typical CNN consists of the following layers: convolution, pooling, rectified linear unit (ReLU), fully connected, and loss. If the previous sentence didn’t make sense, you may want to go through a quick CNN tutorial before proceeding further. Anyway, the reason we may want to have normalization layers in our CNN is that we want to have some kind of inhibition scheme.

In neurobiology, there is a concept called “lateral inhibition”. Now what does that mean? This refers to the capacity of an excited neuron to subdue its neighbors. We basically want a significant peak so that we have a form of local maxima. This tends to create a contrast in that area, hence increasing the sensory perception. Increasing the sensory perception is a good thing! We want to have the same thing in our CNNs.

What exactly is Local Response Normalization?

Local Response Normalization (LRN) layer implements the lateral inhibition we were talking about in the previous section. This layer is useful when we are dealing with ReLU neurons. Why is that? Because ReLU neurons have unbounded activations and we need LRN to normalize that. We want to detect high frequency features with a large response. If we normalize around the local neighborhood of the excited neuron, it becomes even more sensitive as compared to its neighbors.

At the same time, it will dampen the responses that are uniformly large in any given local neighborhood. If all the values are large, then normalizing those values will diminish all of them. So basically we want to encourage some kind of inhibition and boost the neurons with relatively larger activations. This has been discussed nicely in Section 3.3 of the original paper by Krizhevsky et al.

Local Response Normalization 60 million parameters and 500,000 neurons的更多相关文章

  1. 局部响应归一化(Local Response Normalization,LRN)

     版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介 ...

  2. caffe中的Local Response Normalization (LRN)有什么用,和激活函数区别

    http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn ca ...

  3. Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力

    AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过 ...

  4. LRN(local response normalization--局部响应标准化)

    LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法.这个函数很少使用 ...

  5. springmvc 使用 response 的注意事项以及解决500 空指针异常找不到 response 的方法

    使用注解方式在类中(Controller)来装载request时,是可以正常使用request的(必须在启动时才注入,所以不支持热部署),但是同样使用这种方式在已经装载了 request的情况下装载  ...

  6. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  7. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  8. 002-ImageNetClassificationDeep2017

    ImageNet classification with deep convolutional neural networks #paper 1. paper-info 1.1 Metadata Au ...

  9. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

随机推荐

  1. 转 markdown编写规则、语法

    http://www.jianshu.com/p/1e402922ee32/ Markdown——入门指南 字数2231 阅读307754 评论115 喜欢1350 转载请注明原作者,如果你觉得这篇文 ...

  2. 一简单c++程序之反汇编

    #include<iostream> using namespace std; class point3d; class point2d; class point3d { private: ...

  3. mkdir(): No such file or directory

    mkdir(): No such file or directory php创建目录时提示没有文件或目录, (1)先检查目录权限: (2)细看mkdir()的用法: 定义和用法: mkdir() 函数 ...

  4. CSS3自定义滚动条

    webkit支持拥有overflow属性的区域,列表框,下拉菜单,textarea的滚动条自定义样式,不过由于用到了CSS3的属性,兼容性不好 看下滚动条demo:demo1(纯CSS3版) 滚动条的 ...

  5. php--转码函数

    最近在用dedecms二次开发会员功能:大家都知道dedecms编码是GBK格式的:所以在我们在项目中经常需要转码,在我了解中有两种转码方式:一是:iconv:二是mb_convert_encodin ...

  6. vscode golang配置说明

    一.vscode-go插件安装 go 1.10.2 https://golang.org/dl/ 需要墙 vscode 1.23.1 https://code.visualstudio.com/ vs ...

  7. js -“=”“==”和“===”的区别

    这个问题再面试中经常被问到,说实话我都是懵的,一个“=”和两个“==”等的区别我还是知道的,就是三个“===”我完全是不知道的,因为我基本上都没有遇到过且用到过,所以再这个问题上我是没分的,人家考官就 ...

  8. [笔记][Web]利用JS生成博文目录及CSS定制博客

    0. 简介 进入到cnblog这个大园子以后,和其他的一些博客网站比起来,少了些小功能,比如旁边CSDN上的目录.不过好在大神辈出,博客园可以通过申请JS权限来进行目录的生成. 由于本人在JS以及CS ...

  9. luogu P1057 传球游戏

    题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做传球游戏. 游戏规则是这样的:n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同 ...

  10. java判断日期与星期

    原文:http://www.open-open.com/code/view/1440592372888 import java.text.SimpleDateFormat; import java.u ...