CNN是工具,在图像识别中是发现图像中待识别对象的特征的工具,是剔除对识别结果无用信息的工具。

ImageNet Classification with Deep Convolutional Neural Networks

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

http://caffe.berkeleyvision.org/tutorial/layers/lrn.html

【侧抑制】

The local response normalization layer performs a kind of “lateral inhibition” by normalizing over local input regions.

https://prateekvjoshi.com/2016/04/05/what-is-local-response-normalization-in-convolutional-neural-networks/

Why do we need normalization layers in the first place?

A typical CNN consists of the following layers: convolution, pooling, rectified linear unit (ReLU), fully connected, and loss. If the previous sentence didn’t make sense, you may want to go through a quick CNN tutorial before proceeding further. Anyway, the reason we may want to have normalization layers in our CNN is that we want to have some kind of inhibition scheme.

In neurobiology, there is a concept called “lateral inhibition”. Now what does that mean? This refers to the capacity of an excited neuron to subdue its neighbors. We basically want a significant peak so that we have a form of local maxima. This tends to create a contrast in that area, hence increasing the sensory perception. Increasing the sensory perception is a good thing! We want to have the same thing in our CNNs.

What exactly is Local Response Normalization?

Local Response Normalization (LRN) layer implements the lateral inhibition we were talking about in the previous section. This layer is useful when we are dealing with ReLU neurons. Why is that? Because ReLU neurons have unbounded activations and we need LRN to normalize that. We want to detect high frequency features with a large response. If we normalize around the local neighborhood of the excited neuron, it becomes even more sensitive as compared to its neighbors.

At the same time, it will dampen the responses that are uniformly large in any given local neighborhood. If all the values are large, then normalizing those values will diminish all of them. So basically we want to encourage some kind of inhibition and boost the neurons with relatively larger activations. This has been discussed nicely in Section 3.3 of the original paper by Krizhevsky et al.

Local Response Normalization 60 million parameters and 500,000 neurons的更多相关文章

  1. 局部响应归一化(Local Response Normalization,LRN)

     版权声明:本文为博主原创文章,欢迎转载,注明地址. https://blog.csdn.net/program_developer/article/details/79430119 一.LRN技术介 ...

  2. caffe中的Local Response Normalization (LRN)有什么用,和激活函数区别

    http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn ca ...

  3. Local Response Normalization作用——对局部神经元的活动创建竞争机制,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力

    AlexNet将LeNet的思想发扬光大,把CNN的基本原理应用到了很深很宽的网络中.AlexNet主要使用到的新技术点如下. (1)成功使用ReLU作为CNN的激活函数,并验证其效果在较深的网络超过 ...

  4. LRN(local response normalization--局部响应标准化)

    LRN全称为Local Response Normalization,即局部响应归一化层,LRN函数类似DROPOUT和数据增强作为relu激励之后防止数据过拟合而提出的一种处理方法.这个函数很少使用 ...

  5. springmvc 使用 response 的注意事项以及解决500 空指针异常找不到 response 的方法

    使用注解方式在类中(Controller)来装载request时,是可以正常使用request的(必须在启动时才注入,所以不支持热部署),但是同样使用这种方式在已经装载了 request的情况下装载  ...

  6. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  7. 1 - ImageNet Classification with Deep Convolutional Neural Network (阅读翻译)

    ImageNet Classification with Deep Convolutional Neural Network 利用深度卷积神经网络进行ImageNet分类 Abstract We tr ...

  8. 002-ImageNetClassificationDeep2017

    ImageNet classification with deep convolutional neural networks #paper 1. paper-info 1.1 Metadata Au ...

  9. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

随机推荐

  1. 【Visual Studio】error LNK2038: 检测到“_MSC_VER”的不匹配项: 值“1600”不匹配值“1800” (转)

    1.案例一 _MSC_VER 定义编译器的版本.下面是一些编译器版本的_MSC_VER值:MS VC++ 10.0 _MSC_VER = 1600MS VC++ 9.0 _MSC_VER = 1500 ...

  2. 如何让div中的文字只显示一行,多余的文字隐藏并加上省略号(超链接形式)

    写页面的时候遇到了一个小小的问题,如何让div中一行超链接文字只显示一行,多余的文字隐藏并加上省略号,悬浮时隐藏的文字显示出来?解决问题时发现了css3的一个新标签  text-overflow  , ...

  3. 关于微信浏览器不支持offset()的兼容性处理

    问题的背景: 在手机触屏版中,当页面向上滑动的时候,导航条可以固定在顶部,通过判断offset().top的值来实现这个功能,其他的浏览器都可以,只有微信浏览器中出现问题(向上滑动的时候,导航条就会直 ...

  4. 阿里数据库性能诊断的利器——SQL执行干预

    概述 在业务数据库性能问题诊断中,如果发现一个业务性能很差跟某个SQL有关,应用连接池几乎被该SQL占满,同时数据库服务器上也不堪重负.此时情况很紧急,业务改SQL重发布已经来不及了,运维能选择的操作 ...

  5. HDU 2586 How far away ? 离线lca模板题

    How far away ? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  6. 【ZJOI2016】小星星

    题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有 $n$ 颗小星星,用 $m$ 条彩色的细线串了起来,每条细线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这 ...

  7. 2017 [六省联考] T2 相逢是问候

    4869: [Shoi2017]相逢是问候 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1205  Solved: 409[Submit][Stat ...

  8. 第4章 CentOS软件安装

    一.安装JDK 1.1 卸载旧版JDK 首先,在你的服务器上运行一下更新. yum update 然后,在您的系统上搜索,任何版本的已安装的JDK组件. rpm -qa | grep -E '^ope ...

  9. List遍历时删除遇到的问题

    这周在开发中遇到了一个以前没遇到的小Bug,在这里记录下来. List集合,我们平时都经常使用.但是,我在遍历List集合时,调用了List集合的remove方法来删除集合中的元素,简单的代码结构是这 ...

  10. abp ueditor 多图以及文件无法上传

    abp .net core使用ueditor遇到的问题:多图和上传文件无法上传,提示“http://请求错误”. 400 bad request解决办法: 因为abp默认启用了ValidateAnti ...