题意:

$F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$

求解$\sum_{i=1}^n{ F_i i^K } \  mod \  10^9+7$。

解法:

记$S(n,m) = \sum_{i=1}^n { F_i i^m}$

这样有:

$$S(2n,m)  = \sum_{i=1}^n{F_i i^m} + \sum_{i=1}^n{F_{i+n} (i+n)^m}$$

记$G = \lgroup \begin{matrix} 1 & 1 \\ 1 & 0 \end{matrix} \rgroup$

有$F_n = G_{1,1}$

将$S(n,m)$的含义换为对应求和的矩阵。

1.考虑从$S(n,m)$推到$S(2n,m)$

$$S(2n,m) = \sum_{i=1}^n{G^n i^m} + G^n \sum_{i=1}^n{G^{i} (i+n)^m}$$

$$S(2n,m) = \sum_{i=1}^n{G^n i^m} + G^n \sum_{i=1}^n{G^{i} \sum_{r=0}^m{i^rm^{m-r}C_m^r}}$$

$$S(2n,m) = \sum_{i=1}^n{G^n i^m} + G^n \sum_{r=0}^m{m^{m-r}C_m^r S(n,r)}$$

这样$O(K)$完成单次转移。

2.考虑从$S(n,m)$推到$S(n+1,m)$

$$S(n+1,m) = S(n,m) + (n+1)^m G^{n+1}$$

这样分治下去,总效率$O(K^2 logn)$

(注意本题中n过大,要先对于n取模再进行乘法)

 #include <iostream>
#include <cstdio>
#include <cstring> #define LL long long
#define P 1000000007LL using namespace std; struct MA
{
LL a[][]; void init()
{
memset(a,,sizeof(a));
} MA operator*(const MA &x)const
{
MA c;
for(int i=,j,k;i<;i++)
for(j=;j<;j++)
{
c.a[i][j]=;
for(k=;k<;k++)
{
c.a[i][j]+=a[i][k]*x.a[k][j]%P;
if(c.a[i][j]>=P) c.a[i][j]-=P;
}
}
return c;
} MA operator*(const LL &x)const
{
MA c;
for(int i=,j;i<;i++)
for(j=;j<;j++)
c.a[i][j] = a[i][j]*x%P;
return c;
} MA operator+(const MA &x)const
{
MA c;
for(int i=,j;i<;i++)
for(j=;j<;j++)
c.a[i][j] = (a[i][j]+x.a[i][j])%P;
return c;
} void print()
{
puts("Matrix");
for(int i=,j;i<;i++)
{
for(j=;j<;j++) cout<<a[i][j]<<' ';
cout<<endl;
}
}
}; MA G,Gn;
MA S[][];
LL n,power[],C[][];
int K,now; void solve(LL n)
{
if(n==)
{
now=;
Gn = G;
for(int i=;i<=K;i++) S[now][i] = G;
return;
}
solve(n>>);
now^=;
MA tmp;
power[]=;
for(int k=;k<=K;k++) power[k] = power[k-]*((n>>1LL)%P)%P;
for(int k=;k<=K;k++)
{
tmp.init();
for(int r=;r<=k;r++)
tmp = tmp + ( S[now^][r] * (C[k][r]*power[k-r]%P) );
S[now][k] = S[now^][k] + (Gn * tmp);
}
Gn = Gn*Gn;
if(n&)
{
Gn = Gn*G;
power[]=1LL;
for(int k=;k<=K;k++)
{
S[now][k] = S[now][k] + (Gn * power[k]);
power[k+] = power[k]*(n%P)%P;
}
}
} int main()
{
G.a[][]=; G.a[][]=;
G.a[][]=; G.a[][]=;
while(~scanf("%I64d%d",&n,&K))
{
C[][]=;
for(int i=;i<=K;i++)
{
C[i][]=;
for(int j=;j<=i;j++)
{
C[i][j] = C[i-][j-]+C[i-][j];
if(C[i][j]>=P) C[i][j] -= P;
}
}
solve(n);
cout << S[now][K].a[][] << endl;
}
return ;
}

Yet Another Number Sequence的更多相关文章

  1. HDU 1005 Number Sequence

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  2. POJ 1019 Number Sequence

    找规律,先找属于第几个循环,再找属于第几个数的第几位...... Number Sequence Time Limit: 1000MS Memory Limit: 10000K Total Submi ...

  3. HDOJ 1711 Number Sequence

    Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  4. Number Sequence

    Number Sequence   A number sequence is defined as follows: f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) ...

  5. [AX]AX2012 Number sequence framework :(三)再谈Number sequence

    AX2012的number sequence framework中引入了两个Scope和segment两个概念,它们的具体作用从下面序列的例子说起. 法国/中国的法律要求财务凭证的Journal nu ...

  6. KMP - HDU 1711 Number Sequence

    Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. hdu 1005:Number Sequence(水题)

    Number Sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  8. Number Sequence 分类: HDU 2015-06-19 20:54 10人阅读 评论(0) 收藏

    Number Sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tot ...

  9. HDU 1711 Number Sequence(数列)

    HDU 1711 Number Sequence(数列) Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Ja ...

  10. HDU 1005 Number Sequence(数列)

    HDU 1005 Number Sequence(数列) Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Jav ...

随机推荐

  1. laravel 配置了自己的域名以后, localhost 无法访问 404 not found 的解决方法

    这是后盾网视频教程的方法,应该是配置虚拟主机,此方法要改动,apache服务器里的conf文件夹里的httpd.conf文件 和conf/extral里面的httpd-vhost文件 具体改动为,co ...

  2. tail 监控日志文件

    ail命令可以输出文件的尾部内容,默认情况下它显示文件的最后十行.它常用来动态监视文件的尾部内容的增长情况,比如用来监视日志文件的变化.与tail命令对应的是head命令,用来显示文件头部内容. 常用 ...

  3. IntelliJ IDEA配置Tomcat及部署项目

    IntelliJ IDEA配置Tomcat及部署项目(原链接) 主要有以下几个要点 1.选择本地的tomcat容器. 2.可以选择修改访问路径. 3.On Update action 当我们按 Ctr ...

  4. nginx 安装和配置文件说明

    1. 安装依赖包 yum install gcc gcc+ yum install -y pcre pcre-devel openssl openssl-devel zlib zlib-devel 2 ...

  5. iOS开发教程:Storyboard全解析-第一部分

    本文转载至http://blog.csdn.net/chang6520/article/details/7945845 感谢原文作者分享     故事版(Storyboard)是一个能够节省你很多设计 ...

  6. SAM4E单片机之旅——1、LED闪烁之空循环

    最近因为导师要写一本关于SAME4单片机的书籍,而我也作为一个嵌入式的初学者看了这本书.现在也让我写写几个小的程序,做做示例.既然写了文档之类的,就发到博客上来吧. 目前关于这芯片能参考的书籍大概就只 ...

  7. extjs中新建窗体时,给窗体添加背景图片不显示问题之一

    1.在extjs中新建窗体时,给窗体添加背景图片不显示,例如下面的代码. 不显示的原因:因为设置了  layout: 'fit', Ext.create('Ext.Window', { title: ...

  8. emoji字符不能插入MySQL数据库,提示“'\xF0\x9F\x98\x84' for column 'XXXX' at row 1”

    从网络中取下的数据解析后不能插入数据库,提示某个字段有问题,问题提示如下: SQLException: Incorrect string value: '\xF0\x9F\x98\x84' for c ...

  9. java URI 编码解码

    import java.io.UnsupportedEncodingException; /** * url转码.解码 */ public class UrlUtil { private final ...

  10. CSU - 1550 Simple String —— 字符串

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1550 题解: 1.A+B 与C的交集必须>=n 2.A与C的交集必须>= ...