【问题描述】

有N个数,随机选择一段区间,如果这段区间的所有数的平均值在[L,R]中则你比较厉害。求你比较厉害的概率。

【输入格式】

第一行有三个数N, l, r,含义如上描述。

接下来一行有N个数代表每一个数的值。

【输出格式】

输出一行一个分数a/b代表答案,其中a, b互质。 如果答案为整数则直接输出该

整数即可。

【样例输入 1】

4 2 3

3 1 2 4

【样例输出 1】

7/10

【样例输入 2】

4 1 4

3 1 2 4

【样例输出 2】

1

【样例解释】

塔外面有棵树。

【数据规模与约定】

对于30%的数据, 1 ≤ N ≤ 104。

对于60%的数据, 1 ≤ N ≤ 105。

对于100%的数据, 1 ≤ N ≤ 5 × 105, 0 < l ≤ r ≤ 100。

/*
要求区间平均值∈[L,R]的区间个数
现在我们来求区间平均值在1~r的个数和1~l(不包括l)的个数 前减后即为所求
以求1~r为例(用[L,R]-[1,L))
(a[i]+a[i+1]+......+a[i+k-1])/k<=r
[(a[i]+a[i+1]+......+a[i+k-1])+kr]/k<=0
[(a[i]-r)+(a[i+1]-r)+......+(a[i+k-1]-r)]/k<=0 (k>0)
so (a[i]-r)+(a[i+1]-r)+......+(a[i+k-1]-r)<=0
令s[i]=∑(a[i]-r)
即求s数组区间和<=0的个数
s[i+k-1]-s[i]<=0
s[i+k-1]<=s[i]
i<i+k-1
s[i]>=s[i+k-1]
即求s数组逆序对数.
答案为(ansr-ansl)/(n*(n+1)/2).
法二:要求[L,R]的合法答案只需求出不合法答案算补集.
合法的是>=l的正序对个数和<=r的逆序对个数.
so 只需求>=l的逆序对个数和<=r的正序对个数不合法即可(两者必定无交集).
(求正序对只需翻转数组即可orz.)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 500001
#define LL long long
using namespace std;
LL n,l,r,ansl,ansr,tot,a[MAXN],b[MAXN],b1[MAXN],tot1;
struct data{LL x,o;}s[MAXN],c[MAXN];
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
bool cmp(const data &x,const data &y)
{
return x.x<y.x;
}
void add(LL x)
{
while(x<=n)
a[x]++,x+=x&-x;
return ;
}
LL query(LL x)
{
LL sum=0;
while(x>0) sum+=a[x],x-=x&-x;
return sum;
}
int main()
{
freopen("jian.in","r",stdin);
freopen("jian.out","w",stdout);
LL x;
n=read(),l=read(),r=read();
for(LL i=1;i<=n;i++) x=read(),c[i].o=s[i].o=i,
c[i].x=c[i-1].x+x-l,s[i].x=s[i-1].x+x-r;
sort(c+1,c+n+1,cmp),sort(s+1,s+n+1,cmp);
b[c[1].o]=1,b1[s[1].o]=1;
if(c[1].x<0) ansl++;
if(s[1].x<=0) ansr++;
for(LL i=2;i<=n;i++)
{
if(c[i].x==c[i-1].x) b[c[i].o]=b[c[i-1].o];
else b[c[i].o]=b[c[i-1].o]+1;
if(s[i].x==s[i-1].x) b1[s[i].o]=b1[s[i-1].o];
else b1[s[i].o]=b1[s[i-1].o]+1;
if(c[i].x<0) ansl++;
if(s[i].x<=0) ansr++;
}
for(LL i=n;i>=1;i--) ansl+=query(b[i]),add(b[i]+1);
memset(a,0,sizeof a);
for(LL i=n;i>=1;i--) ansr+=query(b1[i]),add(b1[i]);
LL ans=ansr-ansl,total=n*(n+1)/2;
LL xx=__gcd(ans,total);
ans/=xx,total/=xx;
if(total==1) cout<<ans;
else cout<<ans<<'/'<<total;
return 0;
}

Qbxt 模拟题 day2(am) T2 jian的更多相关文章

  1. 全国信息学奥林匹克联赛(NOIP2014)复赛 模拟题Day2 长乐一中

    题目名称 改造二叉树 数字对 交换 英文名称 binary pair swap 输入文件名 binary.in pair.in swap.in 输出文件名 binary.out pair.out sw ...

  2. 2019.10.1 qbxt模拟题

    第一题 考虑树上\(DP\),f[i][j][0/1]表示以\(i\)为根的子树,入读为零点的个数为\(j\),点\(i\)的入度为\(0\)/不为\(0\)时的方案数 转移的时候考虑\(u\)的一个 ...

  3. Qbxt 模拟题 day3(am) T3 选数字 (select)(贪心)

    选数字 (select Time Limit:3000ms Memory Limit:64MB 题目描述 LYK 找到了一个 n*m 的矩阵,这个矩阵上都填有一些数字,对于第 i 行第 j 列的位置上 ...

  4. CSP复赛day2模拟题

    没错,我又爆零了.....先让我自闭一分钟.....so 当你忘记努力的时候,现实会用一记响亮的耳光告诉你东西南北在哪. 好了,现在重归正题: 全国信息学奥林匹克联赛(NOIP2014) 复赛模拟题 ...

  5. QBXT模拟赛2

    总结 期望得分:\(100 + 40 + 0 = 140\) 实际得分:\(0 + 0 + 0 = 0\) 鬼知道为什么我代码没有交上..自测\(10 + 50 + 0\)--这是心态爆炸的一场考试 ...

  6. QBXT模拟赛1

    总结 期望得分:\(100 + 80 + 10 = 190\) 实际得分:\(90 + 80 + 10 = 180\) 这是在清北的第一场考试,也是在清北考的最高的一次了吧..本来以为能拿\(190\ ...

  7. 全国信息学奥林匹克联赛 ( NOIP2014) 复赛 模拟题 Day1 长乐一中

    题目名称 正确答案  序列问题 长途旅行 英文名称 answer sequence travel 输入文件名 answer.in sequence.in travel.in 输出文件名 answer. ...

  8. CH Round #58 - OrzCC杯noip模拟赛day2

    A:颜色问题 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2358%20-%20OrzCC杯noip模拟赛day2/颜色问题 题解:算一下每个仆人到它的目的地 ...

  9. NOIP模拟题汇总(加厚版)

    \(NOIP\)模拟题汇总(加厚版) T1 string 描述 有一个仅由 '0' 和 '1' 组成的字符串 \(A\),可以对其执行下列两个操作: 删除 \(A\)中的第一个字符: 若 \(A\)中 ...

随机推荐

  1. luffy前台配置

    目录 axios前后台交互 cokies操作 element-ui页面组件框架 bootstrap页面组件框架 前端主页 图片准备 页头组件:components/Header.vue 轮播图组件:c ...

  2. 安装 pybloomfilter

    1.在windows的cmd下,使用 pip install pybloomfiltermmap 命令安装,pybloomfiltermmap 时报错 ,错误信息如下 根据错误信息分析,报错原因是需要 ...

  3. 2019牛客暑期多校训练营(第二场) - B - Eddy Walker 2 - BM算法

    参考于: https://www.luogu.org/problemnew/solution/P4723 shadowice1984 (太难) https://www.cnblogs.com/zhgy ...

  4. Codeforces 1189E. Count Pairs

    传送门 可以算是纯数学题了吧... 看到这个 $(x+y)(x^2+y^2)$ 就可以想到化简三角函数时经常用到的操作,左右同乘 那么 $(a_i+a_j)(a_i^2+a_j^2) \equiv  ...

  5. SSM(Spring+SpringMVC+MyBatis)高并发优化思路

    SSM(Spring+SpringMVC+MyBatis)框架集由Spring.MyBatis两个开源框架整合而成(SpringMVC是Spring中的部分内容).常作为数据源较简单的web项目的框架 ...

  6. thymeleaf 模板使用 之 解决因HTML标签未闭合引起的错误

    一.修改thymeleaf属性配置 spring.thymeleaf.prefix=classpath:/templates/ spring.thymeleaf.suffix=.html spring ...

  7. DispatcherTimer和Timer的区别

    两者区别是 Timer在非UI线程跑的,DispatcherTimer是在UI线程跑的, DispatcherTimer 可以直接更新UI Timer必须使用this.Dispatcher.Begin ...

  8. .net下载文件的方法

    最近做项目遇到文件下载的问题,原本采用的是直接用一个href链接到需要下载的文件来处理这个问题,后来发现,如果文件是一个图片,浏览器会自动打开图片而不是下载,需要用户右击另存为才可以下载,很不友好,后 ...

  9. 什么是Web和www

    什么是Web和www 通过之前课程的学习,我们已经对计算机网络有了一些了解,这里我主要想说一个点,也是计算机网络中一个很容易被误解的概念,就是什么是Web,它和HTTP.HTML.Internet.i ...

  10. vue入门:(模板语法与指令)

    vuejs使用及HTML的模板语法,可以实现声明式将DOM绑定至底层VUE实例的数据.通过模板语法将数据渲染进DOM的系统,结合响应系统,在应用状态改变时,Vue能够计算出重新渲染组件的最小代价并应用 ...