【问题描述】

有N个数,随机选择一段区间,如果这段区间的所有数的平均值在[L,R]中则你比较厉害。求你比较厉害的概率。

【输入格式】

第一行有三个数N, l, r,含义如上描述。

接下来一行有N个数代表每一个数的值。

【输出格式】

输出一行一个分数a/b代表答案,其中a, b互质。 如果答案为整数则直接输出该

整数即可。

【样例输入 1】

4 2 3

3 1 2 4

【样例输出 1】

7/10

【样例输入 2】

4 1 4

3 1 2 4

【样例输出 2】

1

【样例解释】

塔外面有棵树。

【数据规模与约定】

对于30%的数据, 1 ≤ N ≤ 104。

对于60%的数据, 1 ≤ N ≤ 105。

对于100%的数据, 1 ≤ N ≤ 5 × 105, 0 < l ≤ r ≤ 100。

/*
要求区间平均值∈[L,R]的区间个数
现在我们来求区间平均值在1~r的个数和1~l(不包括l)的个数 前减后即为所求
以求1~r为例(用[L,R]-[1,L))
(a[i]+a[i+1]+......+a[i+k-1])/k<=r
[(a[i]+a[i+1]+......+a[i+k-1])+kr]/k<=0
[(a[i]-r)+(a[i+1]-r)+......+(a[i+k-1]-r)]/k<=0 (k>0)
so (a[i]-r)+(a[i+1]-r)+......+(a[i+k-1]-r)<=0
令s[i]=∑(a[i]-r)
即求s数组区间和<=0的个数
s[i+k-1]-s[i]<=0
s[i+k-1]<=s[i]
i<i+k-1
s[i]>=s[i+k-1]
即求s数组逆序对数.
答案为(ansr-ansl)/(n*(n+1)/2).
法二:要求[L,R]的合法答案只需求出不合法答案算补集.
合法的是>=l的正序对个数和<=r的逆序对个数.
so 只需求>=l的逆序对个数和<=r的正序对个数不合法即可(两者必定无交集).
(求正序对只需翻转数组即可orz.)
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 500001
#define LL long long
using namespace std;
LL n,l,r,ansl,ansr,tot,a[MAXN],b[MAXN],b1[MAXN],tot1;
struct data{LL x,o;}s[MAXN],c[MAXN];
LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9') {if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*f;
}
bool cmp(const data &x,const data &y)
{
return x.x<y.x;
}
void add(LL x)
{
while(x<=n)
a[x]++,x+=x&-x;
return ;
}
LL query(LL x)
{
LL sum=0;
while(x>0) sum+=a[x],x-=x&-x;
return sum;
}
int main()
{
freopen("jian.in","r",stdin);
freopen("jian.out","w",stdout);
LL x;
n=read(),l=read(),r=read();
for(LL i=1;i<=n;i++) x=read(),c[i].o=s[i].o=i,
c[i].x=c[i-1].x+x-l,s[i].x=s[i-1].x+x-r;
sort(c+1,c+n+1,cmp),sort(s+1,s+n+1,cmp);
b[c[1].o]=1,b1[s[1].o]=1;
if(c[1].x<0) ansl++;
if(s[1].x<=0) ansr++;
for(LL i=2;i<=n;i++)
{
if(c[i].x==c[i-1].x) b[c[i].o]=b[c[i-1].o];
else b[c[i].o]=b[c[i-1].o]+1;
if(s[i].x==s[i-1].x) b1[s[i].o]=b1[s[i-1].o];
else b1[s[i].o]=b1[s[i-1].o]+1;
if(c[i].x<0) ansl++;
if(s[i].x<=0) ansr++;
}
for(LL i=n;i>=1;i--) ansl+=query(b[i]),add(b[i]+1);
memset(a,0,sizeof a);
for(LL i=n;i>=1;i--) ansr+=query(b1[i]),add(b1[i]);
LL ans=ansr-ansl,total=n*(n+1)/2;
LL xx=__gcd(ans,total);
ans/=xx,total/=xx;
if(total==1) cout<<ans;
else cout<<ans<<'/'<<total;
return 0;
}

Qbxt 模拟题 day2(am) T2 jian的更多相关文章

  1. 全国信息学奥林匹克联赛(NOIP2014)复赛 模拟题Day2 长乐一中

    题目名称 改造二叉树 数字对 交换 英文名称 binary pair swap 输入文件名 binary.in pair.in swap.in 输出文件名 binary.out pair.out sw ...

  2. 2019.10.1 qbxt模拟题

    第一题 考虑树上\(DP\),f[i][j][0/1]表示以\(i\)为根的子树,入读为零点的个数为\(j\),点\(i\)的入度为\(0\)/不为\(0\)时的方案数 转移的时候考虑\(u\)的一个 ...

  3. Qbxt 模拟题 day3(am) T3 选数字 (select)(贪心)

    选数字 (select Time Limit:3000ms Memory Limit:64MB 题目描述 LYK 找到了一个 n*m 的矩阵,这个矩阵上都填有一些数字,对于第 i 行第 j 列的位置上 ...

  4. CSP复赛day2模拟题

    没错,我又爆零了.....先让我自闭一分钟.....so 当你忘记努力的时候,现实会用一记响亮的耳光告诉你东西南北在哪. 好了,现在重归正题: 全国信息学奥林匹克联赛(NOIP2014) 复赛模拟题 ...

  5. QBXT模拟赛2

    总结 期望得分:\(100 + 40 + 0 = 140\) 实际得分:\(0 + 0 + 0 = 0\) 鬼知道为什么我代码没有交上..自测\(10 + 50 + 0\)--这是心态爆炸的一场考试 ...

  6. QBXT模拟赛1

    总结 期望得分:\(100 + 80 + 10 = 190\) 实际得分:\(90 + 80 + 10 = 180\) 这是在清北的第一场考试,也是在清北考的最高的一次了吧..本来以为能拿\(190\ ...

  7. 全国信息学奥林匹克联赛 ( NOIP2014) 复赛 模拟题 Day1 长乐一中

    题目名称 正确答案  序列问题 长途旅行 英文名称 answer sequence travel 输入文件名 answer.in sequence.in travel.in 输出文件名 answer. ...

  8. CH Round #58 - OrzCC杯noip模拟赛day2

    A:颜色问题 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2358%20-%20OrzCC杯noip模拟赛day2/颜色问题 题解:算一下每个仆人到它的目的地 ...

  9. NOIP模拟题汇总(加厚版)

    \(NOIP\)模拟题汇总(加厚版) T1 string 描述 有一个仅由 '0' 和 '1' 组成的字符串 \(A\),可以对其执行下列两个操作: 删除 \(A\)中的第一个字符: 若 \(A\)中 ...

随机推荐

  1. vue配置外放generate-asset-webpack-plugin

    解决方法:(共有2个方法) 1.借助插件  generate-asset-webpack-plugin .在webpack.prod.conf.js中去生成configServer.json文件,让其 ...

  2. 安装calico

    安装docker:https://www.cnblogs.com/cjsblogs/p/8717304.html 安装etcd集群:https://www.cnblogs.com/cjsblogs/p ...

  3. Online Meeting CodeForces - 420B (思维)

    大意: 给定某一段连续的上线下线记录, 老板上线或下线时房间无人, 并且每次会议都在场, 求哪些人可能是老板. 结论1: 从未出现过的人一定可以是老板. 结论2: 出现过的人中老板最多只有1个. 结论 ...

  4. date和time

    time和date两个函数在Lua中实现所有的时钟查询功能.函数time在没有参数时返回当前时钟的数值. t=os.date()print(t) 05/07/19 16:49:18 --------- ...

  5. Asp.Net Core 中间件

    什么是中间件(Middleware)? 中间件是组装到应用程序管道中以处理请求和响应的软件. 每个组件: 选择是否将请求传递给管道中的下一个组件. 可以在调用管道中的下一个组件之前和之后执行工作. 请 ...

  6. Python爬虫实战小项目

    爬取国家药品监督管理总局中基于中华人民共和国化妆品生产许可证相关数据 import requests from fake_useragent import UserAgent ua = UserAge ...

  7. “007~ASP 0104~不允许操作”错误的解决方法(图解)

    今天测试一个Z-Blog程序的上传文件时发现总提示“ 007~ASP 0104~不允许操作 ”的错误,经过度度上各位朋友的帮忙,终于找到解决方法. 这是windows2003 server对上传文件的 ...

  8. CentOS6.8安装Python3.6.3

    1.linux下安装python3 准备编译环境(环境如果不对的话,可能遇到各种问题,比如wget无法下载https链接的文件) yum install zlib-devel bzip2-devel ...

  9. JS基础_if练习三

    <!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...

  10. Google谷歌总部员工家庭活动

    每年Google总部都会有针对家庭的两个大活动,其中一个就是万圣节.专门针对员工孩子的.#2019Googleween 今年的Googleween分几个场地,所以每个场地很小.她爸爸只带她去了一个.我 ...