和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解.

#include <bits/stdc++.h>
#define N 23
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
double in[N],out[N],f[N*N][N*N];
int G[N][N],deg[N],idx[N][N],tot;
void Gauss(int n)
{
int i,j,k,now;
for(i=1;i<=n;++i)
{
now=i;
for(j=i;j<=n;++j)
{
if(fabs(f[j][i])>fabs(f[now][i])) now=j;
}
if(now!=i)
{
for(j=1;j<=n;++j) swap(f[i][j],f[now][j]);
}
if(f[i][i])
{
for(j=i+1;j<=n+1;++j) f[i][j]/=f[i][i];
f[i][i]=1;
}
for(j=i+1;j<=n;++j)
{
double div=f[j][i];
for(k=i+1;k<=n+1;++k) f[j][k]-=div*f[i][k];
f[j][i]=0;
}
}
for(i=n;i>=1;--i)
{
for(j=i+1;j<=n;++j)
{
f[i][n+1]-=f[j][n+1]*f[i][j];
}
}
}
int main()
{
// setIO("input");
int n,i,j,m,A,B;
scanf("%d%d%d%d",&n,&m,&A,&B);
for(i=1;i<=m;++i)
{
int u,v;
scanf("%d%d",&u,&v),G[u][v]=G[v][u]=1,++deg[u],++deg[v];
}
for(i=1;i<=n;++i) scanf("%lf",&in[i]), out[i]=(1-in[i])/(1.0*deg[i]);
for(i=1;i<=n;++i) G[i][i]=1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j) idx[i][j]=++tot;
}
f[idx[A][B]][tot+1]=-1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
int cur=idx[i][j];
f[cur][cur]=-1;
for(int x=1;x<=n;++x)
{
for(int y=1;y<=n;++y)
{
if(x==y||!G[i][x]||!G[j][y]) continue;
int id=idx[x][y];
if(i==x&&j==y)
{
f[cur][id]+=in[i]*in[j];
}
else if(i==x&&j!=y)
{
f[cur][id]+=in[x]*out[y];
}
else if(i!=x&&j==y)
{
f[cur][id]+=out[x]*in[y];
}
else
{
f[cur][id]+=out[x]*out[y];
}
}
}
}
}
Gauss(tot);
for(i=1;i<=n;++i)
{
printf("%.6f ",f[idx[i][i]][tot+1]);
}
return 0;
}

  

BZOJ 3270: 博物馆 概率与期望+高斯消元的更多相关文章

  1. BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元

    Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...

  2. BZOJ 3143 游走(贪心+期望+高斯消元)

    一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...

  3. l洛谷 P6030 [SDOI2012]走迷宫 概率与期望+高斯消元

    题目描述 传送门 分析 首先判掉 \(INF\) 的情况 第一种情况就是不能从 \(s\) 走到 \(t\) 第二种情况就是从 \(s\) 出发走到了出度为 \(0\) 的点,这样就再也走不到 \(t ...

  4. BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元

    这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ...

  5. BZOJ 3143 游走 | 数学期望 高斯消元

    啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...

  6. 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元

    [题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...

  7. 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元

    [题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...

  8. [BZOJ3143][HNOI2013]游走(期望+高斯消元)

    3143: [Hnoi2013]游走 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3576  Solved: 1608[Submit][Status ...

  9. BZOJ 3270: 博物馆 [概率DP 高斯消元]

    http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...

随机推荐

  1. 【计数】Simple Addition Expression

    [来源] 2008年哈尔滨区域赛 [题目链接]: http://acm.hdu.edu.cn/showproblem.php?pid=2451 [参考博客]: HDU 2451 Simple Addi ...

  2. Codeforces 1237B. Balanced Tunnel

    传送门 这一题有点意思 首先预处理出 $pos[x]$ 表示编号 $x$ 的车是第几个出隧道的 然后按进入隧道的顺序枚举每辆车 $x$ 考虑有哪些车比 $x$ 晚进入隧道却比 $x$ 早出隧道 显然是 ...

  3. IntelliJ IDEA 2017.3.2 热加载(Hot Swap)

    一.IntelliJ IDEA 自带热加载,修改代码后点击Ctrl + F9即可 缺点:1.Ctrl + F9只对当前类重新编译加载 2.只支持构造代码块的CRUD.方法体内代码修改.资源文件内容的修 ...

  4. LinqToSQL2

    扩展方法: 扩展方法是C#3.0的新特性,可以通过为已知类型添加新方法来到到扩展类型的目的,同时不需对此类型做任何改动. 重点记住的是,定义为静态方法的扩展方法只能在通过using指令显示地将名称空间 ...

  5. 和 Python 2.x 说再见!项目移到python3

    如果你仍在使用 2.x,那么是时候将你的代码移植到 Python 3 了. 在技术的长河中,软件.工具.系统等版本的迭代本是常事,但由于使用习惯.版本的兼容性.易用性等因素,很多用户及开发者在使用或做 ...

  6. Navicat for Mysql报错1251连接不成功Mysql

    第一步:打开Command Line Client   看清楚不是cmd,是在mysql的目录下,你会发现有2个一模一样其实哪个都行 第二步:输入mysql密码回车    就是安装mysql时设置的密 ...

  7. day1-css练习[新浪首页顶部栏]

    直接贴代码吧: html代码 <div class="border-01"> <div class="border-001"> < ...

  8. docker 安装php

    nginx :docker pull nginx docker run -p 80:80 --name nginx -v /usr/local/nginx/www:/www -v /usr/local ...

  9. 详解python中的生成器表达式

    什么是生成器表达式 还记得列表解析吗?我们把[]换成()就变成生成器表达式了. g = (x for x in [1, 2, 3, 4]) print(g) # <generator objec ...

  10. 解决xshell连接不上阿里云服务器问题

    最近购买了阿里云服务器准备玩玩,但是使用xshell连接阿里云服务器时,系统一直提示“Connection established. To escape to local shell, press ' ...