BZOJ 3270: 博物馆 概率与期望+高斯消元
和游走挺像的,都是将概率转成期望出现的次数,然后拿高斯消元来解.
#include <bits/stdc++.h>
#define N 23
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
double in[N],out[N],f[N*N][N*N];
int G[N][N],deg[N],idx[N][N],tot;
void Gauss(int n)
{
int i,j,k,now;
for(i=1;i<=n;++i)
{
now=i;
for(j=i;j<=n;++j)
{
if(fabs(f[j][i])>fabs(f[now][i])) now=j;
}
if(now!=i)
{
for(j=1;j<=n;++j) swap(f[i][j],f[now][j]);
}
if(f[i][i])
{
for(j=i+1;j<=n+1;++j) f[i][j]/=f[i][i];
f[i][i]=1;
}
for(j=i+1;j<=n;++j)
{
double div=f[j][i];
for(k=i+1;k<=n+1;++k) f[j][k]-=div*f[i][k];
f[j][i]=0;
}
}
for(i=n;i>=1;--i)
{
for(j=i+1;j<=n;++j)
{
f[i][n+1]-=f[j][n+1]*f[i][j];
}
}
}
int main()
{
// setIO("input");
int n,i,j,m,A,B;
scanf("%d%d%d%d",&n,&m,&A,&B);
for(i=1;i<=m;++i)
{
int u,v;
scanf("%d%d",&u,&v),G[u][v]=G[v][u]=1,++deg[u],++deg[v];
}
for(i=1;i<=n;++i) scanf("%lf",&in[i]), out[i]=(1-in[i])/(1.0*deg[i]);
for(i=1;i<=n;++i) G[i][i]=1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j) idx[i][j]=++tot;
}
f[idx[A][B]][tot+1]=-1;
for(i=1;i<=n;++i)
{
for(j=1;j<=n;++j)
{
int cur=idx[i][j];
f[cur][cur]=-1;
for(int x=1;x<=n;++x)
{
for(int y=1;y<=n;++y)
{
if(x==y||!G[i][x]||!G[j][y]) continue;
int id=idx[x][y];
if(i==x&&j==y)
{
f[cur][id]+=in[i]*in[j];
}
else if(i==x&&j!=y)
{
f[cur][id]+=in[x]*out[y];
}
else if(i!=x&&j==y)
{
f[cur][id]+=out[x]*in[y];
}
else
{
f[cur][id]+=out[x]*out[y];
}
}
}
}
}
Gauss(tot);
for(i=1;i<=n;++i)
{
printf("%.6f ",f[idx[i][i]][tot+1]);
}
return 0;
}
BZOJ 3270: 博物馆 概率与期望+高斯消元的更多相关文章
- BZOJ 3143: [Hnoi2013]游走 概率与期望+高斯消元
Description 一个无向连通图,顶点从1编号到N,边从1编号到M.小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获 ...
- BZOJ 3143 游走(贪心+期望+高斯消元)
一个无向连通图,顶点从1编号到N,边从1编号到M. 小Z在该图上进行随机游走,初始时小Z在1号顶点,每一步小Z以相等的概率随机选 择当前顶点的某条边,沿着这条边走到下一个顶点,获得等于这条边的编号的分 ...
- l洛谷 P6030 [SDOI2012]走迷宫 概率与期望+高斯消元
题目描述 传送门 分析 首先判掉 \(INF\) 的情况 第一种情况就是不能从 \(s\) 走到 \(t\) 第二种情况就是从 \(s\) 出发走到了出度为 \(0\) 的点,这样就再也走不到 \(t ...
- BZOJ 1778: [Usaco2010 Hol]Dotp 驱逐猪猡 概率与期望+高斯消元
这个还挺友好的,自己相对轻松能想出来~令 $f[i]$ 表示起点到点 $i$ 的期望次数,则 $ans[i]=f[i]\times \frac{p}{q}$ #include <cmath> ...
- BZOJ 3143 游走 | 数学期望 高斯消元
啊 我永远喜欢期望题 BZOJ 3143 游走 题意 有一个n个点m条边的无向联通图,每条边按1~m编号,从1号点出发,每次随机选择与当前点相连的一条边,走到这条边的另一个端点,一旦走到n号节点就停下 ...
- 【BZOJ】3143: [Hnoi2013]游走 期望+高斯消元
[题意]给定n个点m条边的无向连通图,每条路径的代价是其编号大小,每个点等概率往周围走,要求给所有边编号,使得从1到n的期望总分最小(求该总分).n<=500. [算法]期望+高斯消元 [题解] ...
- 【BZOJ】2337: [HNOI2011]XOR和路径 期望+高斯消元
[题意]给定n个点m条边的带边权无向连通图(有重边和自环),在每个点随机向周围走一步,求1到n的期望路径异或值.n<=100,wi<=10^9. [算法]期望+高斯消元 [题解]首先异或不 ...
- [BZOJ3143][HNOI2013]游走(期望+高斯消元)
3143: [Hnoi2013]游走 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3576 Solved: 1608[Submit][Status ...
- BZOJ 3270: 博物馆 [概率DP 高斯消元]
http://www.lydsy.com/JudgeOnline/problem.php?id=3270 题意:一张无向图,一开始两人分别在$x$和$y$,每一分钟在点$i$不走的概率为$p[i]$, ...
随机推荐
- Dreamoon and Strings CodeForces - 477C (字符串dp)
大意: 给定字符串$s$, $p$, 对于$0\le x\le |s|$, 求$s$删除$x$个字符后, $p$在$s$中的最大出现次数. 显然答案是先递增后递减的, 那么问题就转化求最大出现次数为$ ...
- NYOJ 石子合并(一) 区间dp入门级别
描述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求出总的代价 ...
- JDBC 24homework
编写程序: 1. 创建商品信息表Goods(包含编号Code.名称Name.数量Number.单价Price) 2. 设计程序流程,由用户选择:插入.删除.修改.查询 程序效果如下: (1)根据提示输 ...
- python 中英文时间转换
上例子:time='Friday, November 18, 2016',将其转换为标准格式: time_format = datetime.datetime.strptime(time, '%A, ...
- 4.Struts2-OGNL
/*ognl 是 strut2 特有的表达式,使用 ognl,struts2 就无需将对象手动放值进request等范围,页面(从值栈中)直接传值*/ OGNL <?xml version=&q ...
- lumen时区
今天用 Lumen 框架写代码时, 也是初次体验 Lumen, 遇到了一个问题, 从数据库里查出的时间比数据库里保存的 TIMESTAMP 时间慢了8个小时, 很明显这是一个时区设置的问题, 本以为可 ...
- python连接oracle导出数据文件
python连接oracle,感觉table_list文件内的表名,来卸载数据文件 主脚本: import os import logging import sys import configpars ...
- ffmpeg生成视频封面图
ffmpeg 是一个视频处理软件 php-ffmpeg 是一个让 php 可以操作 ffmpeg 的 php插件,封装好了各种操作视频的名命令.直接调用对应的方法即可. 使用过程很曲折也很简单 曲折在 ...
- bisect:维护一个有序的列表
介绍 bisect模块实现了一个算法来向列表中插入元素,同时仍然保证列表有序 有序插入 import bisect ''' 可以使用bisect.insort向一个列表中插入元素 ''' values ...
- 百度云直线在线解析+xdown
一:在浏览器打开百度云分享链接(推荐Google)百度云分享的链接:https://pan.baidu.com/s/17YQ2x--kOAa_hpapaTcq8Q第二步:打开直线在线解析:https: ...