Neko does MathsCodeForces - 1152C

  题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的k。

  首先让b>a,由lcm(a,b)=a*b/gcd(a,b),可以得出如果b%a==0,那么它们的最小公倍数就是b,此时的k就等于0。但如果b%a!=0的话,我们设g=gcd(a+k,b+k),那么就是有a+k=q1*g,b+k=q2*g,两者做差,那么b-a=(q2-q1)*g,由此我们可以知道g是b-a的因子。知道这个消息有什么用呢,我们可以在√(b-a) 内枚举g,这样g就是已知量了,我们设q3=(b-a)/g的话,q2=q1+q3,由lcm(a+k,b+k)=(a+k)*(b+k)/gcd(a+k,b+k),就有lcm(a+k,b+k)=q1*q2*g,那么lcm(a+k,b+k)=q1*(q1+q3)*g,只剩下一个未知量q1,而且要让lcm最小,q1也得最小,而q1=(a+k)/g,所以要让q1最小其实就是找一个最小的k使得(a+k)%g==0,那么k=(g-a%g)%g。这样的话枚举g,相应的k也就是出来了,再更新答案就好.

 #include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
int a,b,k;
ll ans;
ll lcm(ll a,ll b){
return a*b/__gcd(a,b);
}
void solve(int g)
{
int nk=(g-a%g)%g;
ll nans=lcm(1ll*(a+nk),1ll*(b+nk));
if(nans<ans||(nans==ans&&nk<k))
k=nk,ans=nans;
}
int main()
{
scanf("%d%d",&a,&b);
if(a>b){
ll t=a;a=b;b=t;
}
if(b%a==)
{
printf("0\n");
return ;;
}
int dis=b-a;
k=;
ans=lcm(a,b);
for(int i=;i*i<=dis;i++)
{
if(dis%i==)
{
solve(i);
solve(dis/i);
}
}
printf("%d\n",k);
return ;
}

数论推推推

Neko does Maths CodeForces - 1152C 数论欧几里得的更多相关文章

  1. L - Neko does Maths CodeForces - 1152C 数论(gcd)

    题目大意:输入两个数 a,b,输出一个k使得lcm(a+k,b+k)尽可能的小,如果有多个K,输出最小的. 题解: 假设gcd(a+k,b+k)=z; 那么(a+k)%z=(b+k)%z=0. a%z ...

  2. ACM数论-欧几里得与拓展欧几里得

    ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...

  3. Codeforces 7C 扩展欧几里得

    扩展欧几里得是计算 ax + by = gcd(a,b) 的 x,y的整数解. 现在是ax + by + c = 0; 只要 -c 是 gcd(a,b) 的整数倍时有整数解,整数解是 x = x*(- ...

  4. ACM数论-欧几里得与拓展欧几里得算法

    欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). ...

  5. 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions

    题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...

  6. Codeforces C.Neko does Maths

    题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...

  7. 【扩展欧几里得】BAPC2014 I Interesting Integers (Codeforces GYM 100526)

    题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...

  8. 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】

    Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...

  9. interesting Integers(数学暴力||数论扩展欧几里得)

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8

随机推荐

  1. zabbix-自定义告警(二)

    实现自定义监控 文章引用:https://www.cnblogs.com/clsn/p/7885990.html#auto_id_28 一.实现自定义监控 说明zabbix自带模板Template O ...

  2. 【原创】大叔经验分享(70)marathon重启app后一直处于waiting状态

    marathon重启app后一直处于waiting状态,查看marathon日志 # journalctl -u marathon -f 有如下日志: Jun 14 12:58:38 DataOne- ...

  3. ThreadLocal的原理与使用

    前言 在java web项目中,经常会使用到单例对象,从服务器启动那一时刻就实例化全局对象.然后会对某些全局对象的属性进行修改之类的操作,但是我们知道项目一般都是部署到tomcat.Jboss之类的服 ...

  4. im_master_search_specification

    中文 http://accel-archives.intra-mart.jp/2014-winter/document/iap/public_zh_CN/im_master/im_master_sea ...

  5. 数据集:Introduction to Econometrics by Stock&Watson

    James H. Stock and Mark W. Watson, Introduction to Econometrics: data sets 詹姆斯·H·斯托克 马克·W·沃森. 计量经济学. ...

  6. umi+antdpro 2.3

    关于umi接管了路由之后的动态配置. 路由通过 router.js 配置文件自动生成. 在 models/ menu.js中可以获取到,但从这里获取到并过滤之后的其实不是路由配置. 正确过滤方式,通过 ...

  7. remote mounting from windows to linux

    8 Ways To Mount SMBfs (SAMBA FILE SYSTEM) In Linux. Sep 8, 2009 How to Mount smbfs (SAMBA file syste ...

  8. Vivotek 摄像头远程栈溢出漏洞分析及利用

    Vivotek 摄像头远程栈溢出漏洞分析及利用 近日,Vivotek 旗下多款摄像头被曝出远程未授权栈溢出漏洞,攻击者发送特定数据可导致摄像头进程崩溃. 漏洞作者@bashis 放出了可造成摄像头 C ...

  9. Hadoop_08_客户端向HDFS读写(上传)数据流程

    1.HDFS的工作机制: HDFS集群分为两大角色:NameNode.DataNode (Secondary Namenode) NameNode负责管理整个文件系统的元数据 DataNode 负责管 ...

  10. jdk提供的线程协调API suspend/resume wait/notify park/unpark

    线程通信(如 线程执行先后顺序,获取某个线程执行的结果等)有多种方式: 文件共享 线程1 --写入--> 文件 < --读取-- 线程2 网络共享 变量共享 线程1 --写入--> ...