Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C
题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的k。
首先让b>a,由lcm(a,b)=a*b/gcd(a,b),可以得出如果b%a==0,那么它们的最小公倍数就是b,此时的k就等于0。但如果b%a!=0的话,我们设g=gcd(a+k,b+k),那么就是有a+k=q1*g,b+k=q2*g,两者做差,那么b-a=(q2-q1)*g,由此我们可以知道g是b-a的因子。知道这个消息有什么用呢,我们可以在√(b-a) 内枚举g,这样g就是已知量了,我们设q3=(b-a)/g的话,q2=q1+q3,由lcm(a+k,b+k)=(a+k)*(b+k)/gcd(a+k,b+k),就有lcm(a+k,b+k)=q1*q2*g,那么lcm(a+k,b+k)=q1*(q1+q3)*g,只剩下一个未知量q1,而且要让lcm最小,q1也得最小,而q1=(a+k)/g,所以要让q1最小其实就是找一个最小的k使得(a+k)%g==0,那么k=(g-a%g)%g。这样的话枚举g,相应的k也就是出来了,再更新答案就好.
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
int a,b,k;
ll ans;
ll lcm(ll a,ll b){
return a*b/__gcd(a,b);
}
void solve(int g)
{
int nk=(g-a%g)%g;
ll nans=lcm(1ll*(a+nk),1ll*(b+nk));
if(nans<ans||(nans==ans&&nk<k))
k=nk,ans=nans;
}
int main()
{
scanf("%d%d",&a,&b);
if(a>b){
ll t=a;a=b;b=t;
}
if(b%a==)
{
printf("0\n");
return ;;
}
int dis=b-a;
k=;
ans=lcm(a,b);
for(int i=;i*i<=dis;i++)
{
if(dis%i==)
{
solve(i);
solve(dis/i);
}
}
printf("%d\n",k);
return ;
}
数论推推推
Neko does Maths CodeForces - 1152C 数论欧几里得的更多相关文章
- L - Neko does Maths CodeForces - 1152C 数论(gcd)
题目大意:输入两个数 a,b,输出一个k使得lcm(a+k,b+k)尽可能的小,如果有多个K,输出最小的. 题解: 假设gcd(a+k,b+k)=z; 那么(a+k)%z=(b+k)%z=0. a%z ...
- ACM数论-欧几里得与拓展欧几里得
ACM数论——欧几里得与拓展欧几里得 欧几里得算法: 欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd ...
- Codeforces 7C 扩展欧几里得
扩展欧几里得是计算 ax + by = gcd(a,b) 的 x,y的整数解. 现在是ax + by + c = 0; 只要 -c 是 gcd(a,b) 的整数倍时有整数解,整数解是 x = x*(- ...
- ACM数论-欧几里得与拓展欧几里得算法
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数. 基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b). ...
- 【数论】【扩展欧几里得】Codeforces 710D Two Arithmetic Progressions
题目链接: http://codeforces.com/problemset/problem/710/D 题目大意: 两个等差数列a1x+b1和a2x+b2,求L到R区间内重叠的点有几个. 0 < ...
- Codeforces C.Neko does Maths
题目描述: C. Neko does Maths time limit per test 1 second memory limit per test 256 megabytes input stan ...
- 【扩展欧几里得】BAPC2014 I Interesting Integers (Codeforces GYM 100526)
题目链接: http://codeforces.com/gym/100526 http://acm.hunnu.edu.cn/online/?action=problem&type=show& ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- interesting Integers(数学暴力||数论扩展欧几里得)
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAwwAAAHwCAIAAACE0n9nAAAgAElEQVR4nOydfUBT1f/Hbw9202m0r8
随机推荐
- Vue 实例之事件 操作样式 (文本、事件、属性、表单、条件)指令
Vue 可以独立完成前后端分离式web项目的JavaScript框架 三大主流框架之一: Angular React Vue 先进的前端设计模式:MVVM 可以完全脱离服务器端,以前端代码复用的方式渲 ...
- 刨根究底字符编码之十——Unicode字符集的编码方式以及码点、码元
Unicode字符集的编码方式以及码点.码元 一.字符编码方式CEF的选择 1. 由于Unicode字符集非常大,有些字符的编号(码点值)需要两个或两个以上字节来表示,而要对这样的编号进行编码,也必须 ...
- Linux命令-文件管理篇-cat
1.cat 说明 cat 是一个文本文件查看和连接工具.查看一个文件的内容,用cat比较简单,就是cat 后面直接接文件名. 2.使用权限 所有使用者 <!-- more --> 3.ca ...
- 牛客 109 C 操作数 (组合数学)
给定长度为n的数组a,定义一次操作为:1. 算出长度为n的数组s,使得si= (a[1] + a[2] + ... + a[i]) mod 1,000,000,007:2. 执行a = s:现在问k次 ...
- spring jpa 学习笔记(一) 之集成
一.pom 配置 <?xml version="1.0"?> <project xsi:schemaLocation="http://maven.apa ...
- Tika提取文件元数据
Tika可以从文件中提取元数据. 什么是元数据: 元数据是文件所提供的的附件信息即文件的属性. word文档的元数据: Tika提取元数据: 我们可以使用文件parse()方法提取元数据,传递一个空的 ...
- web端文件上传,预览,下载,删除
//HTML部分 <div class="item attachment attachmentNew"> <span class="name&quo ...
- 第十章、jupyter入门之pandas
目录 第十章.jupyter入门之pandas 一.什么是pandas 二.Series 三.基本概念 四.基本运算 五.DataFrame 第十章.jupyter入门之pandas 一.什么是pan ...
- php 生成mysql数据字典 (php5.5-5.6)
<?php /** * 生成mysql数据字典 */ //配置数据库 $dbserver = "127.0.0.1"; $dbusername = "root&qu ...
- java线程基础巩固---通过实验分析This锁和Class锁的存在
This锁: 关于什么是This锁下面用实现来说明一下它: 那下面用两个线程分别调用这两个方法,如下: 看结果: 可见两个方法是同时输出的,因为m2()方法并未上锁,所以就不存在争锁的问题,那这时给m ...