题目背景

这是一道模板题

题目描述

由小学知识可知,nn个点(x_i,y_i)(xi​,yi​)可以唯一地确定一个多项式

现在,给定nn个点,请你确定这个多项式,并将kk代入求值

求出的值对998244353998244353取模

输入格式

第一行两个正整数n,kn,k,含义如题

接下来nn行,每行两个正整数x_i,y_ixi​,yi​,含义如题

输出格式

一个整数表示答案

输入阳历:

3 100
1 4
2 9
3 16

输出样例:

10201

所周知,n + 1n+1个xx坐标不同的点可以确定唯一的最高为nn次的多项式。在算法竞赛中,我们常常会碰到一类题目,题目中直接或间接的给出了n+1n+1个点,让我们求由这些点构成的多项式在某一位置的取值

一个最显然的思路就是直接高斯消元求出多项式的系数,但是这样做复杂度巨大(n^3)(n3)且根据算法实现不同往往会存在精度问题

而拉格朗日插值法可以在n^2n2的复杂度内完美解决上述问题

假设该多项式为f(x)f(x), 第ii个点的坐标为(x_i, y_i)(xi​,yi​),我们需要找到该多项式在kk点的取值

根据拉格朗日插值法

f(k) = \sum_{i = 0}^{n} y_i \prod_{i \not = j} \frac{k - x[j]}{x[i] - x[j]}f(k)=i=0∑n​yi​i̸=j∏​x[i]−x[j]k−x[j]​

乍一看可能不是很好理解,我们来举个例子理解一下

假设给出的三个点为(1, 3)(2, 7)(3, 13)(1,3)(2,7)(3,13)

直接把$f(k)展开$

f(k) = 3 \frac{(k - 2)(k - 3)}{(1 - 2)(1 - 3)} + 7\frac{(k-1)(k-2)}{(2 - 1)(2-3)} + 13\frac{(k-1)(k-2)}{(3 -1)(3-2)}f(k)=3(1−2)(1−3)(k−2)(k−3)​+7(2−1)(2−3)(k−1)(k−2)​+13(3−1)(3−2)(k−1)(k−2)​

观察不难得到,如果我们把x_ixi​带入的话,除第ii项外的每一项的分子中都会有x_i - x_ixi​−xi​,这样其他的所有项就都被消去了

因此拉格朗日插值法的正确性是可以保证的

代码:

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#define int long long
#define mod 998244353
const int N = 2050;
using namespace std;
inline int read()
{
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){s=s*10+ch-'0';ch=getchar();}
return s*w;
}
int power(int a,int b)
{
int res=1;
for(;b;b>>=1)
{
if(b&1)res=(res%mod*a%mod)%mod;
a=(a%mod*a%mod)%mod;
}
return res%mod;
}
int x[N],y[N],n,ans,v;
signed main()
{
n=read();
v=read();
for(int i=1;i<=n;i++)
{
x[i]=read();y[i]=read();
}
for(int i=1;i<=n;i++)
{
int k=1;
for(int j=1;j<=n;j++)if(i!=j)k=k*(x[i]+mod-x[j])%mod;
k=power(k,mod-2);
for(int j=1;j<=n;j++)
{
if(i!=j)k=k*(v+mod-x[j])%mod;
}
k=k*y[i]%mod;
ans=(ans+k)%mod;
}
printf("%d\n",ans);
return 0;
}

  

【luogu4781】拉格朗日插值的更多相关文章

  1. 【Luogu4781】【模板】拉格朗日插值

    [Luogu4781][模板]拉格朗日插值 题面 洛谷 题解 套个公式就好 #include<cstdio> #define ll long long #define MOD 998244 ...

  2. Educational Codeforces Round 7 F - The Sum of the k-th Powers 拉格朗日插值

    The Sum of the k-th Powers There are well-known formulas: , , . Also mathematicians found similar fo ...

  3. 常系数齐次线性递推 & 拉格朗日插值

    常系数齐次线性递推 具体记在笔记本上了,以后可能补照片,这里稍微写一下,主要贴代码. 概述 形式: \[ h_n = a_1 h_{n-1}+a_2h_{n-2}+...+a_kh_{n-k} \] ...

  4. 快速排序 and 拉格朗日插值查找

    private static void QuictSort(int[] zu, int left, int right) { if (left < right) { ; ; ]; while ( ...

  5. BZOJ3601 一个人的数论 莫比乌斯反演、高斯消元/拉格朗日插值

    传送门 题面图片真是大到离谱-- 题目要求的是 \(\begin{align*}\sum\limits_{i=1}^N i^d[gcd(i,n) == 1] &= \sum\limits_{i ...

  6. 【XSY1537】五颜六色的幻想乡 数学 生成树计数 拉格朗日插值

    题目大意 ​ 有一个\(n\)个点\(m\)条边的图,每条边有一种颜色\(c_i\in\{1,2,3\}\),求所有的包括\(i\)条颜色为\(1\)的边,\(j\)条颜色为\(2\)的边,\(k\) ...

  7. 【BZOJ2655】calc DP 数学 拉格朗日插值

    题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1, ...

  8. P4781 【模板】拉格朗日插值

    P4781 [模板]拉格朗日插值 证明 :https://wenku.baidu.com/view/0f88088a172ded630b1cb6b4.html http://www.ebola.pro ...

  9. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  10. BZOJ.4559.[JLOI2016]成绩比较(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 为什么已经9点了...我写了多久... 求方案数,考虑DP... \(f[i][j]\)表示到第\(i\)门课,还有\(j\)人会被碾压的方案数. 那么\[f[i][j]=\sum_{ ...

随机推荐

  1. 一文看懂java io系统 (转)

    出处:  一文看懂java io系统   学习java IO系统,重点是学会IO模型,了解了各种IO模型之后就可以更好的理解java IO Java IO 是一套Java用来读写数据(输入和输出)的A ...

  2. 并不对劲的CF1236D&E:Alice&Doll&UnfairGame

    CF1236D Alice&Doll 题目描述 有一个机器人在一个\(n\times m\)的有\(k\)个障碍网格上移动,上北下南左西右东. 它一开始在第一行第一列,面朝东边.它在每个格子上 ...

  3. Codeforces 1247F. Tree Factory

    传送门 正难则反,把链操作成树不好想,那么考虑一下如何把树变成链 每次操作相当于把一个兄弟变成儿子(我把你当兄弟你竟然想把我当儿子.jpg) 注意到每次操作最多只能使树的深度增加 $1$ 因为链的深度 ...

  4. Winform界面GridView中XCDataGridViewCheckBoxAllColumn改变触发事件

    1.首先利用CurrentCellDirtyStateChanged事件 监测状态改变后判断是否有未提交的更改,若有则提交 private void CurrentCellDirtyStateChan ...

  5. [NOIP10.5模拟赛]1.a题解--离散化+异或线段树

    题目链接: 咕咕咕 https://www.luogu.org/problemnew/show/CF817F 闲扯 在Yali经历几天折磨后信心摧残,T1数据结构裸题考场上连暴力都TM没打满 分析 观 ...

  6. Linux克隆修改配置文件及IP

    Linux下安装基本的开发软件比较费劲,特别是安装mysql的时候,这时候就需要学会克隆及直接备份base虚拟机了,下次直接打开,修改网卡文件信息就完事. 克隆虚拟机eth0网卡出现的问题解决1:修改 ...

  7. 六:MVC数据建模(增删改查)

    今天我们来学习mvc增删改查等操作(试着结合前面学习的LINQ方法语法结合查询) 我创建了一个car的数据库,只有一个Cars表 表里面就几个字段 插入了一些数据 想要创建一个ADO.NET实体数据模 ...

  8. 关于linux一些备份、还原,压缩,归档的命令

    15.1 gzipgzip(1) 是GNU的压缩程序.它只对单个文件进行压缩.基本用法如下:$ gzip filename程序执行以后,文件名会变成filename.gz,而且一般情况下大小会比原文件 ...

  9. web开发:定位布局

    一.盒子的显隐 二.小米topbar 三.相对定位 四.决定定位 五.固定定位 六.z-index属性 七.流式布局思想 八.hover父子悬浮 一.盒子的显隐 1.同一结构下, 如果采用浮动布局,所 ...

  10. RNN基础

    RNN之所以称为循环神经网路,即一个序列当前的输出与前面的输出也有关.具体的表现形式为网络会对前面的信息进行记忆并应用于当前输出的计算中,即隐藏层之间的节点不再无连接而是有连接的,并且隐藏层的输入不仅 ...