Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)
Almost Acyclic Graph
time limit per test
1 second
memory limit per test
256 megabytes
input
standard input
output
standard output
You are given a directed graph consisting of n vertices and m edges (each edge is directed, so it can be traversed in only one direction). You are allowed to remove at most one edge from it.
Can you make this graph acyclic by removing at most one edge from it? A directed graph is called acyclic iff it doesn't contain any cycle (a non-empty path that starts and ends in the same vertex).
Input
The first line contains two integers n and m (2 ≤ n ≤ 500, 1 ≤ m ≤ min(n(n - 1), 100000)) — the number of vertices and the number of edges, respectively.
Then m lines follow. Each line contains two integers u and v denoting a directed edge going from vertex u to vertex v (1 ≤ u, v ≤ n, u ≠ v). Each ordered pair (u, v) is listed at most once (there is at most one directed edge from u to v).
Output
If it is possible to make this graph acyclic by removing at most one edge, print YES. Otherwise, print NO.
Examples
input
Copy
3 41 22 33 23 1
output
Copy
YES
input
Copy
5 61 22 33 23 12 14 5
output
Copy
NO
Note
In the first example you can remove edge , and the graph becomes acyclic.
In the second example you have to remove at least two edges (for example, and ) in order to make the graph acyclic.
题意:
给你有一个n个点,m个边的有向图。
问是否可以只删除一个边,使整个图无环。
思路:
枚举每一个节点,将该节点的入度减去1,先不用管删除的是哪个边,删除一个终点是i节点的边的影响就是i的入度减去1.
然后通过拓扑排序在\(O(n+m)\) 的时间复杂度里可以判断出一个有向图是否有环。
所以整体的时间复杂度是\(O(n*(n+m))\)
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
inline void getInt(int *p);
// const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
const int maxn = 510;
const int maxm = 3e5 + 10;
struct edge {
int to, from, nxt;
} edges[maxm];
int n, ind[maxn];
int in[maxn];
int head[maxn], cnt;
// 初始化
void init(int _n)
{
n = _n, cnt = -1;
for (int i = 1; i <= n; i++) { head[i] = -1, ind[i] = 0; }
}
// 加边
void addedge(int u, int v)
{
edges[++cnt].from = u;
edges[cnt].to = v;
edges[cnt].nxt = head[u];
head[u] = cnt;
ind[v]++;
}
bool go()
{
queue<int> Q;
for (int i = 1; i <= n; i++) {
if (ind[i] == 0) { Q.push(i); }
}
cnt = 0;
while (!Q.empty()) {
int u = Q.front();
Q.pop();
cnt++;
for (int i = head[u]; i != -1; i = edges[i].nxt) {
int v = edges[i].to;
if (--ind[v] == 0) { Q.push(v); }
}
}
return cnt == n;
}
int m;
int x, y;
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
du2(n, m);
init(n);
while (m--) {
du2(x, y);
addedge(x, y);
in[y]++;
}
int isok = 0;
repd(i, 1, n) {
if (in[y]) {
memcpy(ind, in, sizeof(in));
ind[i]--;
if (go()) {
isok = 1;
break;
}
}
}
if (isok) {
puts("YES");
} else {
puts("NO");
}
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)的更多相关文章
- Almost Acyclic Graph CodeForces - 915D (思维,图论)
大意: 给定无向图, 求是否能删除一条边后使图无环 直接枚举边判环复杂度过大, 实际上删除一条边可以看做将该边从一个顶点上拿开, 直接枚举顶点即可 复杂度$O(n(n+m))$ #include &l ...
- Legal or Not(拓扑排序判环)
http://acm.hdu.edu.cn/showproblem.php?pid=3342 Legal or Not Time Limit: 2000/1000 MS (Java/Others) ...
- POJ 1094 Sorting It All Out(拓扑排序+判环+拓扑路径唯一性确定)
Sorting It All Out Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 39602 Accepted: 13 ...
- LightOJ1003---Drunk(拓扑排序判环)
One of my friends is always drunk. So, sometimes I get a bit confused whether he is drunk or not. So ...
- HDU1811 拓扑排序判环+并查集
HDU Rank of Tetris 题目:http://acm.hdu.edu.cn/showproblem.php?pid=1811 题意:中文问题就不解释题意了. 这道题其实就是一个拓扑排序判圈 ...
- Almost Acyclic Graph Codeforces - 915D
以前做过的题都不会了.... 此题做法:优化的暴力 有一个显然的暴力:枚举每一条边试着删掉 注意到题目要求使得图无环,那么找出图上任意一个环,都应当要在其某一处断开(当然没有环是YES) 因此找出图中 ...
- [bzoj3012][luogu3065][USACO12DEC][第一!First!] (trie+拓扑排序判环)
题目描述 Bessie has been playing with strings again. She found that by changing the order of the alphabe ...
- 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环
[题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...
- P1983 车站分级 思维+拓扑排序
很久以前的一道暑假集训的题,忘了补. 感觉就是思维建图,加拓扑排序. 未停靠的火车站,必然比停靠的火车站等级低,就可以以此来建边,此处注意用vis来维护一下,一个起点和终点只建立一条边,因为不这样的话 ...
随机推荐
- Web模糊测试:WFuzz的坑和快速入门
转载自 FreeBuf.COM 首先说下我对wfuzz这个工具的简单介绍和理解.工具主要是做web模糊测试,最开始做fuzz我是自己写个脚本配合一些常用工具来测,后来看见这款工具因为是比较简单吧,学习 ...
- 计算1-9总共九个数字可以满足abc+def=hij这样的式子
计算1-9总共九个数字可以满足abc+def=hij这样的式子:其中abcdefghij九个数字各个都不相同,它们都属于1-9个数字中: 首先,第一种方法很简单很暴力,直接枚举,这样的话时间复杂度高: ...
- DDE 的知识和使用
在github上下载.net 版本的NDde 开发包 或者在此处下载开发包 MSDN 地址 创建服务器 class BasicDDE:DdeServer { public BasicDDE(strin ...
- virtualbox 扩容存储
本文讲解一种方式: 第一步: 我们需要将virtual box 设置成全局的环境变量 第二步: 找到要修改的xxx.vdi文件,通过命令来修改 下面操作步骤 1.设置virtual box 的环境变量 ...
- Linux安装zookeeper集群
一.单机部署: ①下载.解压 http://archive.apache.org/dist/zookeeper/ tar -zxf zookeeper-3.4.10.tar.gz -C /usr/lo ...
- Mybatis Plus带多条件的多表联合、分页、排序查询
目录 一.现有表 student学生表: facultylist学院表: 二.同时满足以下需求: 1.多表联合查询出学院名字 2.可以带多条件查询 3.指定页码,页数据大小进行物理分页查询 三.解决步 ...
- 第三章 VIVADO 自定义IP 流水灯实验
第二章里面已经说过了,MIZ701 PL部分没有输入时钟,因此驱动PL资源必须是通过PS来提供时钟,所以这个流水灯实验也得建立一个最小系统了,然后再添加一个流水灯的自定义IP. 3.0本章难度系数★★ ...
- WPF 位图处理相关类
位图的存储方式 开始之前,先了解下位图的存储方式 位图的像素都分配有特定的位置和颜色值.每个像素的颜色信息由RGB组合或者灰度值表示,根据位深度,可将位图分为1.4.8.16.24及32位图像等.每个 ...
- Oracle 表分区介绍与使用
什么是表分区 分区表是将大表的数据分成称为分区的许多小的子集,类型有FAT32,NTFST32,NTFS.另外,分区表的种类划分主要有:range,list,和hash分区.划分依据主要是根据其表内部 ...
- python+vsCode 环境搭建
先安装python环境和vscode Python下载链接:https://www.python.org/vscode下载地址:https://code.visualstudio.com/ 安装这两个 ...