GERALD07

Description

N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。

Input

第一行四个整数N、M、K、type,代表点数、边数、询问数以及询问是否加密。

接下来M行,代表图中的每条边。

接下来K行,每行两个整数L、R代表一组询问。对于type=0的测试点,读入的L和R即为询问的L、R;对于type=1的测试点,每组询问的L、R应为L xor lastans和R xor lastans。

Output

K行每行一个整数代表该组询问的联通块个数。

Sample Input

3 5 4 0

1 3

1 2

2 1

3 2

2 2

2 3

1 5

5 5

1 2

Sample Output

2

1

3

1

HINT

对于100%的数据,1≤N、M、K≤200,000。

hzwer的题解

连通块的个数可以用n-生成树的边数来计算。

有一个比较猎奇的做法:首先把边依次加到图中,若当前这条边与图中的边形成了环,那么把这个环中最早加进来的边弹出去,并将每条边把哪条边弹了出去记录下来:ntr[i] = j,特别地,要是没有弹出边,ntr[i] = 0;

这个可以用LCT来弄。

然后对于每个询问,我们的对l~r中ntr小于l的边计数,并用n减去这个值。

正确性可以YY一下:

  • 如果一条边的ntr >= l,那么显然他可以与从l ~ r中的边形成环,那么它对答案没有贡献。
  • 反之如果一条边的ntr < l那么它与从l ~ r中的边是不能形成环的,那么他对答案的贡献为-1。

对于查询从l ~ r中有多少边的ntr小于l,我反正是用的函数式线段树。时间复杂度\(O((M+K)\log N)\)。

co int N=4e5+1,M=2e5+1,INF=0x3f3f3f3f;
bool type;
int n,m,Q,lastans,top,tot,sz;
int s[N],st[M],root[M];
int c[N][2],fa[N],val[N],mn[N];
int sum[4000005],ls[4000005],rs[4000005];
bool rev[N];
struct edge{int u,v;}e[M];
bool isroot(int x){
return c[fa[x]][0]!=x&&c[fa[x]][1]!=x;
}
void update(int x){
int l=c[x][0],r=c[x][1];
mn[x]=x;
if(val[mn[l]]<val[mn[x]]) mn[x]=mn[l];
if(val[mn[r]]<val[mn[x]]) mn[x]=mn[r];
}
void pushdown(int x){
int l=c[x][0],r=c[x][1];
if(rev[x]){
std::swap(c[x][0],c[x][1]);
rev[l]^=1,rev[r]^=1,rev[x]=0;
}
}
void rotate(int x){
int y=fa[x],z=fa[y],l,r;
l=c[y][1]==x,r=l^1;
if(!isroot(y)) c[z][c[z][1]==y]=x;
fa[y]=x,fa[x]=z,fa[c[x][r]]=y;
c[y][l]=c[x][r],c[x][r]=y;
update(y),update(x);
}
void splay(int x){
top=0,s[++top]=x;
for(int i=x;!isroot(i);i=fa[i]) s[++top]=fa[i];
for(int i=top;i;--i) pushdown(s[i]);
while(!isroot(x)){
int y=fa[x],z=fa[y];
if(!isroot(y)) rotate(c[y][0]==x^c[z][0]==y?x:y);
rotate(x);
}
}
void access(int x){
for(int t=0;x;x=fa[t=x])
splay(x),c[x][1]=t,update(x);
}
void makeroot(int x){
access(x),splay(x),rev[x]^=1;
}
void link(int x,int y){
makeroot(x),fa[x]=y;
}
void cut(int x,int y){
makeroot(x),access(y),splay(y);
c[y][0]=fa[x]=0;
}
int find(int x){
access(x),splay(x);
while(c[x][0]) x=c[x][0];
return x;
}
int query(int x,int y){
makeroot(x),access(y),splay(y);
return mn[y];
}
void insert(int l,int r,int x,int&y,int val){
y=++sz;
sum[y]=sum[x]+1;
if(l==r) return;
ls[y]=ls[x],rs[y]=rs[x];
int mid=(l+r)>>1;
if(val<=mid) insert(l,mid,ls[x],ls[y],val);
else insert(mid+1,r,rs[x],rs[y],val);
}
int query(int l,int r,int x,int y,int val){
if(r==val) return sum[y]-sum[x];
int mid=(l+r)>>1;
if(val<=mid) return query(l,mid,ls[x],ls[y],val);
else return sum[ls[y]]-sum[ls[x]]+query(mid+1,r,rs[x],rs[y],val); }
int main(){
// freopen(".in","r",stdin);
// freopen(".out","w",stdout);
read(n),read(m),read(Q),read(type);
val[0]=INF;
for(int i=1;i<=n;++i) mn[i]=i,val[i]=INF;
for(int i=1;i<=m;++i)
read(e[i].u),read(e[i].v);
tot=n;
for(int i=1;i<=m;++i){
int u=e[i].u,v=e[i].v;
if(u==v){
st[i]=i;continue;
}
if(find(u)==find(v)){
int t=query(u,v),x=val[t];
st[i]=x;
cut(e[x].u,t),cut(e[x].v,t);
}
++tot;
mn[tot]=tot,val[tot]=i;
link(u,tot),link(v,tot);
}
for(int i=1;i<=m;++i)
insert(0,m,root[i-1],root[i],st[i]);
for(int i=1;i<=Q;++i){
int l=read<int>(),r=read<int>();
if(type) l^=lastans,r^=lastans;
lastans=n-query(0,m,root[l-1],root[r],l-1);
printf("%d\n",lastans);
}
return 0;
}

BZOJ3514 GERALD07加强版的更多相关文章

  1. BZOJ3514:GERALD07加强版(LCT,主席树)

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密. 接下来 ...

  2. [BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2177  Solved: 834 ...

  3. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  4. 【LCT+主席树】BZOJ3514 Codechef MARCH14 GERALD07加强版

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2023  Solved: 778 ...

  5. bzoj3514 Codechef MARCH14 GERALD07加强版 lct预处理+主席树

    Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1951  Solved: 746[Submi ...

  6. [BZOJ 3514]Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES)

    [BZOJ3514] Codechef MARCH14 GERALD07加强版 (CHEF AND GRAPH QUERIES) 题意 \(N\) 个点 \(M\) 条边的无向图,\(K\) 次询问保 ...

  7. BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )

    从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...

  8. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  9. BZOJ_3514_Codechef MARCH14 GERALD07加强版_主席树+LCT

    BZOJ_3514_Codechef MARCH14 GERALD07加强版_主席树+LCT Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. I ...

随机推荐

  1. 按键板的原理和实现--基于GPIO的按键板

    上篇介绍简单的ADC实现,需要IC提供一个额外的ADC.但出于IC成本的考虑,无法提供这个的ADC时,但提供了多个额外的GPIO(General Purpose Input Output:双向的:可以 ...

  2. mysql大小写敏感配置

    mysql大小写敏感配置show global variables like '%lower_case%'; show global variables like '%lower_case%'; &l ...

  3. [一点感触]ADF4350 ADF4111混频记

    几经周折,还是和jack顺利的调完了二者的混频,回想起来我发的上一个版本是2016-11-29,时间可能永远停留在这里了... 祝您一路走好,未来的世界不再忙碌.奔波! 发两张界面纪念吧: 也曾想着把 ...

  4. Universial robot 运动学

    1 正运动学: 1.1 DH方法理解 第i个坐标系固连在第i个连杆的左端.轴i固连于i-1杆,在i-1杆的右端.  i坐标系固定在i杆上,随这i杆转动. 每个连杆有四个参数,第i个连杆: ai = ( ...

  5. STL源码剖析——空间配置器Allocator#3 自由链表与内存池

    上节在学习第二级配置器时了解了第二级配置器通过内存池与自由链表来处理小区块内存的申请.但只是对其概念进行点到为止的认识,并未深入探究.这节就来学习一下自由链表的填充和内存池的内存分配机制. refil ...

  6. C++ new/delete详解及原理

    学了冯诺依曼体系结构,我们知道: 硬件决定软件行为,数据都是围绕内存流动的. 可想而知,内存是多么重要.当然,我们这里说的内存是虚拟内存(详情看Linxu壹之型). 1.C/C++内存布局 2.C语言 ...

  7. PB笔记之导入、导出组件

    导入组件 导出组件

  8. RabbitMQ的应用场景

    进入正题. 一.异步处理 场景:发送手机验证码,邮件 传统古老处理方式如下图 这个流程,全部在主线程完成,注册->入库->发送邮件->发送短信,由于都在主线程,所以要等待每一步完成才 ...

  9. DevExtreme学习笔记(一) DataGrid中js分析

    1.overviewjs采用 $(function() { $("#gridContainer").dxDataGrid({ dataSource: { store: { type ...

  10. win7用驱动精灵安装了bcm94352ac蓝牙驱动后还是不能用蓝牙的解决方法

    驱动精灵安装了驱动后,设备管理器处显示Bluetooth USB,但是没法用蓝牙,找不到蓝牙图标,后来在华硕官方下载了win7的Broadcom 蓝牙驱动程序装上之后就好了