P1168 中位数[堆 优先队列]
题目描述
给出一个长度为NNN的非负整数序列AiA_iAi,对于所有1≤k≤(N+1)/21 ≤ k ≤ (N + 1) / 21≤k≤(N+1)/2,输出A1,A3,…,A2k−1A_1, A_3, …, A_{2k - 1}A1,A3,…,A2k−1的中位数。即前1,3,5,…1,3,5,…1,3,5,…个数的中位数。
输入输出格式
输入格式:
第1行为一个正整数N,表示了序列长度。
第2行包含N个非负整数Ai(Ai≤109)。
输出格式:
共2(N+1)/2行,第iii行为A1,A3,…,A2k−1的中位数。
输入输出样例
7
1 3 5 7 9 11 6
1
3
5
6
说明
对于20%的数据,N≤100;
对于40%的数据,N≤3000;
对于100%的数据,N≤100000。
解析:
解法一:
STL的vector暴力解。
参考代码:
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<ctime>
#include<queue>
#include<vector>
#include<algorithm>
#define N 100010
using namespace std;
vector<int> a;
int main()
{
int n,x;
cin>>n;
for(int i=;i<n;i++)
{
scanf("%d",&x);
a.insert(upper_bound(a.begin(),a.end(),x),x);
if(i%==) printf("%d\n",a[(i+)/]);
}
return ;
}
解法二:
这里要引入一种堆的新的打开方式:两个堆维护第k大/小的数。
我们用一个大跟堆存放较小值,一个小根堆存放较大值,也就是说,两个堆保持大根堆中的最大值恒比小根堆中的最小值小这样一种性质。
每次动态向两个堆中放入数值时,我们都要维护它的性质,使得它是第k大的值。
求中位数是这个思路的一个变种。
参考代码:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<ctime>
#include<cstdlib>
#include<algorithm>
#include<queue>
#include<set>
#include<map>
using namespace std;
priority_queue<int> q;
priority_queue<int,vector<int>,greater<int> > p;
int main()
{
int n,x;
cin>>n;
scanf("%d",&x);
q.push(x);
printf("%d\n",q.top());
for(int i=;i<=n;i++)
{
scanf("%d",&x);
if(x<q.top()) q.push(x);
else p.push(x);
while(abs(q.size()-p.size())>)
{
if(q.size()>p.size()){
p.push(q.top());q.pop();
}
else{
q.push(p.top());p.pop();
}
if(i%){
if(q.size()>p.size()) printf("%d\n",q.top());
else printf("%d\n",p.top());
}
}
}
return ;
}
2019-05-26 17:13:43
P1168 中位数[堆 优先队列]的更多相关文章
- [luogu]P1168 中位数[堆]
[luogu]P1168 中位数 题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.即前1 ...
- P1168 中位数 堆
题目描述 给出一个长度为NN的非负整数序列A_iAi,对于所有1 ≤ k ≤ (N + 1) / 21≤k≤(N+1)/2,输出A_1, A_3, …, A_{2k - 1}A1,A3,…,A2 ...
- 洛谷 P1168 中位数(优先队列)
题目链接 https://www.luogu.org/problemnew/show/P1168 解题思路 这个题就是求中位数,但是暴力会tle,所以我们用一种O(nlogn)的算法来实现. 这里用到 ...
- 剑指 Offer 41. 数据流中的中位数 + 堆 + 优先队列
剑指 Offer 41. 数据流中的中位数 Offer_41 题目详情 题解分析 本题使用大根堆和小根堆来解决这个寻找中位数和插入中位数的问题. 其实本题最直接的方法是先对数组进行排序,然后取中位数. ...
- 洛谷——P1168 中位数
P1168 中位数 题目描述 给出一个长度为NN的非负整数序列$A_i$,对于所有1 ≤ k ≤ (N + 1),输出$A_1, A_3, …, A_{2k - 1}A1,A3,…,A2k−1 ...
- P1168 中位数
P1168 中位数树状数组+二分答案.树状数组就是起一个高效查询比二分出来的数小的有几个. #include<iostream> #include<cstdio> #inclu ...
- 【洛谷】【堆】P1168 中位数
[题目描述:] 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.即前1,3,5,……个数的中位数. ...
- P1168 中位数(对顶堆)
题意:维护一个序列,两种操作 1.插入一个数 2.输出中位数(若长度为偶数,输出中间两个较小的那个) 对顶堆 维护一个小根堆,一个大根堆,大根堆存1--mid,小根堆存mid+1---n 这样堆顶必有 ...
- P1168 中位数 (优先队列,巧解)
题目描述 给出一个长度为N的非负整数序列A[i],对于所有1 ≤ k ≤ (N + 1) / 2,输出A[1], A[3], …, A[2k - 1]的中位数.即前1,3,5,……个数的中位数. 输入 ...
随机推荐
- 利用卷积神经网络处理cifar图像分类
这是一个图像分类的比赛CIFAR( CIFAR-10 - Object Recognition in Images ) 首先我们需要下载数据文件,地址: http://www.cs.toronto.e ...
- svn查看登录过的账号密码
直接下载:http://www.leapbeyond.com/ric/TSvnPD/
- Jenkins+maven+gitlab自动化部署之docker发布sprint boot项目(七)
Jenkins发布docker应用与发布java应用配置基本一致,需要配置Dockerfile及构建的步骤,步骤如下: 1.jenkins主机构建应用为jar包 2.jenkins主机把生产的jar包 ...
- 02 File类的方法练习——遍历文件夹
思路 需要遍历的文件夹 File 使用listFile列出下级文件及文件夹 判断得到的list是否为空,为空则输出当前文件夹名称 如果不为空,逐个判断是文件还是文件夹 如果是文件,输出文件名 如果是文 ...
- BUG:WSL 的 ssh server 无法启动
BUG 使用 sudo service ssh start 启动 ssh 服务,提示: * Restarting OpenBSD Secure Shell server sshd Could not ...
- javascript之instanceof
定义和用法 instanceof 运算符用来检测 constructor.prototype 是否存在于参数 object 的原型链上. 语法: object instanceof construct ...
- 稀疏检出-使用git检索出仓库里的某一个目录文件,而不是整个仓库的所有文件
具体工作意义是从某一个Git仓库 克隆时,只克隆检测出这个仓库里的某些文件夹内容,而不是跟平常那样把整个仓库的内容都克隆下来 从1.7.0版本开始git提供稀疏检出的功能.所谓稀疏检出就是本地版本库检 ...
- Yii2.0 手动添加扩展 redis为例
手动下载yii2-redis扩展包(https://github.com/yiisoft/yii2-redis )并解压 将解压后的文件移至/vebdor/yiisoft命名为yii2-redis 打 ...
- css 省略号的写法
单行省略号 overflow: hidden; text-overflow:ellipsis; white-space: nowrap; width:500px; 多行省略号 overflow: hi ...
- Golang高并发抓取HTML图片
Golang高并发抓取HTML图片 使用准备 1.安装Golang 2.下载爬虫包 go get -v github.com/hunterhug/marmot/util go get -v githu ...