Node.js  event loop 和 JS 浏览器环境下的事件循环的区别:

1.线程与进程:

JS 是单线程执行的,指的是一个进程里只有一个主线程,那到底什么是线程?什么是进程?

进程是 CPU 资源分配的最小单位;线程是 CPU 调度的最小单位。

一个进程由一个或多个线程组成,线程是一个进程中代码的不同执行路线。

一个进程的内存空间是共享的,每个线程都可用这些共享内存。

2.多进程和多线程

多进程:在同一个时间里,同一个计算机系统中如果允许两个或两个以上的进程处于运行状态。多进程带来的好处是明显的,比如你可以听歌的同时,打开编辑器敲代码,编辑器和听歌软件的进程之间丝毫不会相互干扰。

多线程:程序中包含多个执行流,即在一个程序中可以同时运行多个不同的线程来执行不同的任务,也就是说允许单个程序创建多个并行执行的线程来完成各自的任务。

以 Chrome 浏览器中为例,当你打开一个 Tab 页时,其实就是创建了一个进程,一个进程中可以有多个线程(下文会详细介绍),比如渲染线程、JS 引擎线程、HTTP 请求线程等等。当你发起一个请求时,其实就是创建了一个线程,当请求结束后,该线程可能就会被销毁。

3.浏览器

浏览器内核是通过取得页面内容、整理信息(应用 CSS)、计算和组合最终输出可视化的图像结果,通常也被称为渲染引擎。

浏览器内核是多线程,在内核控制下各线程相互配合以保持同步,一个浏览器通常由以下常驻线程组成:

  • GUI 渲染线程
  • JavaScript 引擎线程
  • 定时触发器线程
  • 事件触发线程
  • 异步 http 请求线程

1. GUI 渲染线程

主要负责页面的渲染,解析 HTML、CSS,构建 DOM 树,布局和绘制等。
当界面需要重绘或者由于某种操作引发回流时,将执行该线程。
该线程与 JS 引擎线程互斥,当执行 JS 引擎线程时,GUI 渲染会被挂起,当任务队列空闲时,JS 引擎才会去执行 GUI 渲染。

2. JS 引擎线程
该线程当然是主要负责处理 JavaScript 脚本,执行代码。
也是主要负责执行准备好待执行的事件,即定时器计数结束,或者异步请求成功并正确返回时,将依次进入任务队列,等待 JS 引擎线程的执行。
当然,该线程与 GUI 渲染线程互斥,当 JS 引擎线程执行 JavaScript 脚本时间过长,将导致页面渲染的阻塞。

3. 定时器触发线程
负责执行异步定时器一类的函数的线程,如: setTimeout,setInterval。
主线程依次执行代码时,遇到定时器,会将定时器交给该线程处理,当计数完毕后,事件触发线程会将计数完毕后的事件加入到任务队列的尾部,等待 JS 引擎线程执行。

4. 事件触发线程
主要负责将准备好的事件交给 JS 引擎线程执行。
比如 setTimeout 定时器计数结束, ajax 等异步请求成功并触发回调函数,或者用户触发点击事件时,该线程会将整装待发的事件依次加入到任务队列的队尾,等待 JS 引擎线程的执行。

5. 异步 http 请求线程
负责执行异步请求一类的函数的线程,如: Promise,axios,ajax 等。
主线程依次执行代码时,遇到异步请求,会将函数交给该线程处理,当监听到状态码变更,如果有回调函数,事件触发线程会将回调函数加入到任务队列的尾部,等待 JS 引擎线程执行。

window.onload = function(){
console.log(1)
setTimeout(function(){
console.log(2)
},0)
for (var i = 0; i < 10; i++) {
if(i == 999) console.log(10)
}
console.log(4)
}

  上面代码输出结果为1,3,4,2

浏览器的 Event-loop:

事件循环中的异步队列有两种:macro(宏任务)队列和 micro(微任务)队列。宏任务队列可以有多个,微任务队列只有一个。

常见的 macro-task 比如:setTimeout、setInterval、 setImmediate、script(整体代码)、 I/O 操作、UI 渲染等。
常见的 micro-task 比如: process.nextTick、new Promise().then(回调)、MutationObserver(html5 新特性) 等。

全局上下文(script 标签)被推入执行栈,同步代码执行。在执行的过程中,会判断是同步任务还是异步任务,通过对一些接口的调用,可以产生新的 macro-task 与 micro-task,它们会分别被推入各自的任务队列里。同步代码执行完了,script 脚本会被移出 macro 队列,这个过程本质上是队列的 macro-task 的执行和出队的过程。

上一步我们出队的是一个 macro-task,这一步我们处理的是 micro-task。但需要注意的是:当 macro-task 出队时,任务是一个一个执行的;而 micro-task 出队时,任务是一队一队执行的。因此,我们处理 micro 队列这一步,会逐个执行队列中的任务并把它出队,直到队列被清空。

当某个宏任务执行完后,会查看是否有微任务队列。如果有,先执行微任务队列中的所有任务,如果没有,会读取宏任务队列中排在最前的任务,执行宏任务的过程中,遇到微任务,依次加入微任务队列。栈空后,再次读取微任务队列里的任务,依次类推。

Promise.resolve().then(()=>{
console.log('Promise1')
setTimeout(()=>{
console.log('setTimeout2')
},0)
})
setTimeout(()=>{
console.log('setTimeout1')
Promise.resolve().then(()=>{
console.log('Promise2')
})
},0) 最后输出结果是 Promise1,setTimeout1,Promise2,setTimeout2

  

1.一开始执行栈的同步任务(这属于宏任务)执行完毕,会去查看是否有微任务队列,上题中存在(有且只有一个),然后执行微任务队列中的所有任务输出 Promise1,同时会生成一个宏任务 setTimeout2
2.然后去查看宏任务队列,宏任务 setTimeout1 在 setTimeout2 之前,先执行宏任务 setTimeout1,输出 setTimeout1
3.在执行宏任务 setTimeout1 时会生成微任务 Promise2 ,放入微任务队列中,接着先去清空微任务队列中的所有任务,输出 Promise2
4.清空完微任务队列中的所有任务后,就又会去宏任务队列取一个,这回执行的是 setTimeout2

Node 中的 Event Loop

Node 中的 Event Loop 和浏览器中的是完全不相同的东西。Node.js 采用 V8 作为 js 的解析引擎,而 I/O 处理方面使用了自己设计的 libuv,libuv 是一个基于事件驱动的跨平台抽象层,封装了不同操作系统一些底层特性,对外提供统一的 API,事件循环机制也是它里面的实现(下文会详细介绍)

Node.js 的运行机制如下:

1.V8 引擎解析 JavaScript 脚本。
2.解析后的代码,调用 Node API。
3.libuv 库负责 Node API 的执行。它将不同的任务分配给不同的线程,形成一个 Event Loop(事件循环),以异步的方式将任务的执行结果返回给 V8 引擎。
4.V8 引擎再将结果返回给用户。

六个阶段

其中 libuv 引擎中的事件循环分为 6 个阶段,它们会按照顺序反复运行。每当进入某一个阶段的时候,都会从对应的回调队列中取出函数去执行。当队列为空或者执行的回调函数数量到达系统设定的阈值,就会进入下一阶段。

node 中的事件循环的顺序:

外部输入数据–>轮询阶段(poll)–>检查阶段(check)–>关闭事件回调阶段(close callback)–>定时器检测阶段(timer)–>I/O 事件回调阶段(I/O callbacks)–>闲置阶段(idle, prepare)–>轮询阶段(按照该顺序反复运行)…

1.timers 阶段:这个阶段执行 timer(setTimeout、setInterval)的回调
2.I/O callbacks 阶段:处理一些上一轮循环中的少数未执行的 I/O 回调
3.idle, prepare 阶段:仅 node 内部使用
4.poll 阶段:获取新的 I/O 事件, 适当的条件下 node 将阻塞在这里
5.check 阶段:执行 setImmediate() 的回调
6.close callbacks 阶段:执行 socket 的 close 事件回调

上面六个阶段都不包括 process.nextTick()

(1) timer

timers 阶段会执行 setTimeout 和 setInterval 回调,并且是由 poll 阶段控制的。
同样,在 Node 中定时器指定的时间也不是准确时间,只能是尽快执行。

(2) poll

poll 是一个至关重要的阶段,这一阶段中,系统会做两件事情

回到 timer 阶段执行回调
执行 I/O 回调
并且在进入该阶段时如果没有设定了 timer 的话,会发生以下两件事情

如果 poll 队列不为空,会遍历回调队列并同步执行,直到队列为空或者达到系统限制
如果 poll 队列为空时,会有两件事发生
如果有 setImmediate 回调需要执行,poll 阶段会停止并且进入到 check 阶段执行回调
如果没有 setImmediate 回调需要执行,会等待回调被加入到队列中并立即执行回调,这里同样会有个超时时间设置防止一直等待下去
当然设定了 timer 的话且 poll 队列为空,则会判断是否有 timer 超时,如果有的话会回到 timer 阶段执行回调。

(3) check 阶段

setImmediate()的回调会被加入 check 队列中,从 event loop 的阶段图可以知道,check 阶段的执行顺序在 poll 阶段之后。

console.log('start')
setTimeout(() => {
console.log('timer1')
Promise.resolve().then(function() {
console.log('promise1')
})
}, 0)
setTimeout(() => {
console.log('timer2')
Promise.resolve().then(function() {
console.log('promise2')
})
}, 0)
Promise.resolve().then(function() {
console.log('promise3')
})
console.log('end')
//start=>end=>promise3=>timer1=>timer2=>promise1=>promise2
---------------------

  

一开始执行栈的同步任务(这属于宏任务)执行完毕后(依次打印出 start end,并将 2 个 timer 依次放入 timer 队列),会先去执行微任务(这点跟浏览器端的一样),所以打印出 promise3
然后进入 timers 阶段,执行 timer1 的回调函数,打印 timer1,并将 promise.then 回调放入 microtask 队列,同样的步骤执行 timer2,打印 timer2;这点跟浏览器端相差比较大,timers 阶段有几个 setTimeout/setInterval 都会依次执行,并不像浏览器端,每执行一个宏任务后就去执行一个微任务(关于 Node 与浏览器的 Event Loop 差异,下文还会详细介绍)。

process.nextTick

这个函数其实是独立于 Event Loop 之外的,它有一个自己的队列,当每个阶段完成后,如果存在 nextTick 队列,就会清空队列中的所有回调函数,并且优先于其他 microtask 执行。

setTimeout(() => {
console.log('timer1')
Promise.resolve().then(function() {
console.log('promise1')
})
}, 0)
process.nextTick(() => {
console.log('nextTick')
process.nextTick(() => {
console.log('nextTick')
process.nextTick(() => {
console.log('nextTick')
process.nextTick(() => {
console.log('nextTick')
})
})
})
})
// nextTick=>nextTick=>nextTick=>nextTick=>timer1=>promise1

  

Node 与浏览器的 Event Loop 差异

浏览器环境下,microtask 的任务队列是每个 macrotask 执行完之后执行。而在 Node.js 中,microtask 会在事件循环的各个阶段之间执行,也就是一个阶段执行完毕,就会去执行 microtask 队列的任务。

参考链接:

https://blog.csdn.net/Fundebug/article/details/86487117

https://nodejs.org/zh-cn/docs/guides/event-loop-timers-and-nexttick/

https://www.jianshu.com/p/b221e6e36dcb

Node.js event loop 和 JS 浏览器环境下的事件循环的区别的更多相关文章

  1. The Node.js Event Loop, Timers, and process.nextTick() Node.js事件循环,定时器和process.nextTick()

    个人翻译 原文:https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/ The Node.js Event Loop, Ti ...

  2. [译]Node.js - Event Loop

    介绍 在读这篇博客之前,我强列建议先阅读我的前两篇文章: Getting Started With Node.js Node.js - Modules 在这篇文章中,我们将学习 Node.js 中的事 ...

  3. Node.js Event Loop 的理解 Timers,process.nextTick()

    写这篇文章的目的是将自己对该文章的理解做一个记录,官方文档链接The Node.js Event Loop, Timers, and process.nextTick() 文章内容可能有错误理解的地方 ...

  4. The Node.js Event Loop, Timers, and process.nextTick()

    The Node.js Event Loop, Timers, and process.nextTick() | Node.js https://nodejs.org/uk/docs/guides/e ...

  5. JS event loop

    一.为什么JavaScript是单线程? JavaScript语言的一大特点就是单线程,也就是说,同一个时间只能做一件事.那么,为什么JavaScript不能有多个线程呢?这样能提高效率啊. Java ...

  6. atitit.js浏览器环境下的全局异常捕获

    atitit.js浏览器环境下的全局异常捕获 window.onerror = function(errorMessage, scriptURI, lineNumber) { var s= JSON. ...

  7. JS执行环境栈及事件循环机制—简洁明了的讲解

    JavaScript解释器在浏览器中是单线程的,这意味着浏览器在同一时间内只执行一个事件,对于其他的事件我们把它们排队在一个称为 执行栈(调用栈) 的地方.下表是一个单线程栈的抽象视图: 我们已经知道 ...

  8. 浏览器环境下Javascript脚本加载与执行探析之DOMContentLoaded

    在”浏览器环境下Javascript脚本加载与执行探析“系列文章的前几篇,分别针对浏览器环境下JavaScript加载与执行相关的知识点或者属性进行了探究,感兴趣的同学可以先行阅读前几篇文章,了解相关 ...

  9. 浏览器环境下JavaScript脚本加载与执行探析之动态脚本与Ajax脚本注入

    在<浏览器环境下JavaScript脚本加载与执行探析之defer与async特性>中,我们研究了延迟脚本(defer)和异步脚本(async)的执行时机.浏览器支持情况.浏览器bug以及 ...

随机推荐

  1. .NET Core SignalR 和 .NET SignalR 区别

    由于要转 .NET Core ,对于以前用到的一些进行迁移. 在迁移 SignalR 的时候发现 .NET Core 下的和 .NET 下的区别还是挺大的. 功能差异 自定重新连接 .NET 下的 S ...

  2. 0016SpringBoot实现RESTFUL形式的增删改查

    1.列表页面如下 <!DOCTYPE html><!-- saved from url=(0052)http://getbootstrap.com/docs/4.0/examples ...

  3. ES6中构造函数内super关键字的使用

    super关键字用于访问和调用一个对象的父对象上的函数. super.prop和super[expr]表达式在类和对象字面量任何方法定义中都是有效的. 语法 super([arguments]); / ...

  4. HTTP请求响应过程以及与HTTPS区别

    HTTP协议 HTTP协议主要应用是在服务器和客户端之间,客户端接受超文本. 服务器按照一定规则,发送到客户端(一般是浏览器)的传送通信协议.与之类似的还有文件传送协议(file transfer p ...

  5. 01_Request和Response

    参考文档 http://www.iamnancy.top/djangorestframework/Responses/ https://q1mi.github.io/Django-REST-frame ...

  6. LeetCode 317. Shortest Distance from All Buildings

    原题链接在这里:https://leetcode.com/problems/shortest-distance-from-all-buildings/ 题目: You want to build a ...

  7. public abstract啥时候可以省略?

    父类是抽象类,其中有抽象方法,那么子类继承父类,并把父类中的所有方法都实现覆盖了,子类才有创建对象实例的能力,否则子类也必须是抽象类.抽象类中可以有构造方法,是子类在构造子类对象时需要调用父类(抽象类 ...

  8. CSPS分数取mod赛92-93

    我好菜啊..... 92只会打暴力,93暴力都不会了 模拟92, T1:直接ex_gcd加分类讨论即可 T2:考场只会打暴搜,正解为排序后线段树解决,排序的关键字为a+b,因为如果ai<bj&a ...

  9. Bsgs模板

    模板最主要的是自己看得舒服,不会给自己留隐患,调起来比较简单,板子有得是,最主要的是改造出适合你的那一套.                  ——mzz #include<bits/stdc++ ...

  10. 【原】Python基础-函数

    #不定长参数,这里prams是一个元组集合def print_params(*prams): for e in prams: print(e) print(prams) #输出('xxx', (1, ...