AGC009E Eternal Average
神题orz
那个擦掉\(k\)个数然后写上一个平均值可以看成是\(k\)叉Huffman树的构造过程,每次选\(k\)个点合成一个新点,然后权值设为平均值.这些0和1都会在叶子的位置,同时每个叶子\(i\)的贡献为\(w_i\)(0或1)\(*{\frac{1}{k}}^{dep_i}\),也就是每过一层这个叶子代表的0或1就要除掉\(k\)加到答案里,这样子算,所有点的贡献之和正好是最终的平均值.还要满足\(\sum_{i=1}^{n}{\frac{1}{k}}^{dep_i}+\sum_{j=1}^{m}{\frac{1}{k}}^{dep_j}=1\),相当于如果全是1那么最后的值也是1.那么\(z\)能被表示成最终的值当且仅当\(z\)能表示成\(m\)个\({\frac{1}{k}}^{a_i}\)之和,以及\(1-z\)能表示成\(n\)个\({\frac{1}{k}}^{b_i}\)之和
如果把最终的值写成\(k\)进制小数,也就是\(0.c_1c_2...c_l\),那么\(\sum c=m\),当然这是没考虑进位,每次进位会导致一个\(c_i\ge k\)的\(c_i\)减\(k\),并且对应的\(c_{i-1}\)加\(1\),那么每次进位都会导致\(\sum c\)减去\(k-1\),所以条件就要改为\(\sum c \equiv m \mod k-1\).然后\(1-z\)的\(\sum c\)应该是\(l(k-1)+1-\sum c\),其中前半部分为整数1的\(k\)进制表示,所以在满足上述条件的情况下还满足\(l(k-1)+1-\sum c < n\)以及\(l(k-1)+1-\sum c \equiv n \mod k-1\)
然后dp求方案数.设\(f_{i,j}\)为考虑\(i\)位,\(\sum c\)为\(j\)的方案.注意我们要强制最后一位\(>0\),不然会和前面的方案算重,再加一维\(0/1\)表示末尾是\(0\)还是\(>0\)即可.转移可以前缀和优化
#include<bits/stdc++.h>
#define LL long long
#define uLL unsigned long long
#define db double
using namespace std;
const int N=2000+10,mod=1e9+7;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,m,kk,f[2][N][2],pr[N],ans;
int main()
{
n=rd(),m=rd(),kk=rd();
int nw=1,la=0;
f[0][0][0]=1;
int lm=max(n,m)<<1;
for(int i=1;i<=lm;++i)
{
for(int j=0;j<=m;++j)
{
pr[j]=j?pr[j-1]:0;
pr[j]=(pr[j]+(f[la][j][0]+f[la][j][1])%mod)%mod;
f[la][j][0]=f[la][j][1]=0;
}
for(int j=0;j<=m;++j)
{
f[nw][j][0]=(pr[j]-(j?pr[j-1]:0)+mod)%mod;
if(j) f[nw][j][1]=(pr[j-1]-(j-(kk-1)-1<0?0:pr[j-(kk-1)-1])+mod)%mod;
if(j%(kk-1)==m%(kk-1)&&(i*(kk-1)+1-j)%(kk-1)==n%(kk-1)&&i*(kk-1)+1-j<=n)
ans=(ans+f[nw][j][1])%mod;
}
nw^=1,la^=1;
}
printf("%d\n",ans);
return 0;
}
AGC009E Eternal Average的更多相关文章
- AtCoder AGC009E Eternal Average (DP)
题目链接 https://atcoder.jp/contests/agc009/tasks/agc009_e 题解 又被劝退了... 第一步转化非常显然: 就等价于一开始有一个数\(1\), 有\(\ ...
- 【AGC009E】Eternal Average
[AGC009E]Eternal Average 题面 洛谷 题解 神仙题.jpg 我们把操作看成一棵\(k\)叉树,其中每个节点有权值,所有叶子节点(共\(n+m\)个)就是\(0\)或\(1\). ...
- AGC009:Eternal Average
传送门 好神啊 直接考虑一棵 \(n+m\) 个叶子的 \(k\) 叉树,根结点权值为 \(\sum_{i\in m}(\frac{1}{k})^{deep_i}\) 对于一个 \(deep\) 的序 ...
- AtCoder Grand Contest 009 E:Eternal Average
题目传送门:https://agc009.contest.atcoder.jp/tasks/agc009_e 题目翻译 纸上写了\(N\)个\(1\)和\(M\)个\(0\),你每次可以选择\(k\) ...
- AT2294 Eternal Average
题目 题目给我们的这个东西可以转化为一棵\(k\)叉树,有\(n+m\)个叶子节点,其中\(m\)个权值为\(1\),\(n\)个权值为\(0\),每个非叶子节点的权值为其儿子的平均值,现在问你根节点 ...
- AtCoder刷题记录
构造题都是神仙题 /kk ARC066C Addition and Subtraction Hard 首先要发现两个性质: 加号右边不会有括号:显然,有括号也可以被删去,答案不变. \(op_i\)和 ...
- ZJOI2017 Day2
私のZJOI Day2 2017-3-22 08:00:07 AtCoder试题选讲 SYC(Sun Yican) from Shaoxing No.1 High School 2017-3-22 0 ...
- AtCoder Grand Contest 009
AtCoder Grand Contest 009 A - Multiple Array 翻译 见洛谷 题解 从后往前考虑. #include<iostream> #include< ...
- AtCoder Grand Contest
一句话题解 QwQ主要是因为这篇文章写的有点长……有时候要找某一个题可能不是很好找,所以写了这个东西. 具体的题意.题解和代码可以再往下翻._(:з」∠)_ AGC 001 C:枚举中点/中边. D: ...
随机推荐
- ActiveXObject常用方法
function getusername() { var WshNetwork = new ActiveXObject("WScript.Network"); alert(&quo ...
- JSON-Runoob-工具:Json 格式化工具
ylbtech-JSON-Runoob-工具:Json 格式化工具 1.返回顶部 1. http://c.runoob.com/front-end/53 2. 2.返回顶部 3.返回顶部 4. ...
- tensorflow dnn 参考
https://blog.csdn.net/qq_35976351/article/details/80793487
- 远程管理控制ssh
传统的网络服务程序,FTP.POP.telnet 本质上都是不安全的,因为它们在网络上通过明文传送口令和数据,这些数据非常容易被截获.SSH叫做Secure Shell.通过SSH,可以把传输数据进行 ...
- .net core 入门一
官网教程:https://docs.microsoft.com/zh-cn/aspnet/core/getting-started/?view=aspnetcore-3.0&tabs=wind ...
- 跨平台python异步回调机制实现和使用方法
跨平台python异步回调机制实现和使用方法 这篇文章主要介绍了python异步回调机制的实现方法,提供了使用方法代码 1 将下面代码拷贝到一个文件,命名为asyncore.py 代码如下: impo ...
- Oracle:常用操作(定时作业,逻辑导入,数据泵导入)
1.逻辑导入: /*第1步:创建临时表空间 **/ create temporary tablespace user_temp1 tempfile 'D:\app\Administrator\orad ...
- cef加载flash的办法
cef有2种加载flash插件的方式, 1,npapi,这种方式是调用系统自带的flash插件,由于有安全性方面的问题,已经被新版cef禁用. 2,ppapi,也就是 pepper flash,这是谷 ...
- Codeforces Round #594 (Div. 2)(A/B/C)
A. Integer PointsDescription DLS and JLS are bored with a Math lesson. In order to entertain themsel ...
- acrobat xi pro 11 补丁激活
acrobat xi pro 11 是一款专门为Adobe Acrobat XI Pro 11制作的破解补丁,这款补丁可以免去软件的激活步骤,让用户可以永久免费使用这款软件.11是款功能强大的pdf设 ...