【洛谷P4430】小猴打架
题目大意:求带标号 N 个点的生成树个数,两棵生成树相同当且仅当两棵树结构相同且边的生成顺序相同。
题解:学会了 prufer 序列。
prufer 序列是用来表示带标号的无根树的序列。
每种不同类型的带标号无根树会对应唯一的一个prufer序列。
生成方法:找到这棵树编号最小的叶子节点,将其相邻点加入到序列中,删掉这个点。重复这个过程直到树中只剩下两个点,此时得到的序列即为该树的 Prufer 序列。
性质:在原树中度数为 d 的点,在Prufer序列中出现了 d−1 次。
对于本题来说,在生成树结构相同的情况下,共有 (n - 1)! 种加边顺序。另外,根据 Prufer 序列的性质,共有 \(n^{n - 2}\) 种不同结构的生成树。因此,两部分的答案相乘即可。
代码如下
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL mod = 9999991;
int main() {
int n;
cin >> n;
LL ans = 1;
for (int i = 1; i <= n - 1; i++) ans = ans * i % mod;
for (int i = 1; i <= n - 2; i++) ans = ans * n % mod;
cout << ans << endl;
return 0;
}
【洛谷P4430】小猴打架的更多相关文章
- 洛谷 P4430 小猴打架
洛谷 P4430 小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打 ...
- [洛谷P4430]小猴打架
题目大意:有$n$个点,问有多少种连成生成树的方案. 题解:根据$prufer$序列可得,$n$个点的生成树有$n^{n-2}$个,每种生成树有$(n-1)!$种生成方案,所以答案是$n^{n-2}( ...
- P4430 小猴打架、P4981 父子
prufer编码 当然你也可以理解为 Cayley 公式,其实这个公式就是prufer编码经过一步就能推出的 P4430 小猴打架 P4981 父子 这俩题差不多 先说父子,很显然题目就是让你求\(n ...
- P4430 小猴打架
P4430 小猴打架 题目意思就是让你求,在网格图中(任意两点都有边)的生成树的个数(边的顺序不同也算不同的方案). 首先我们考虑一个生成树,由于一定有n-1条边,单单考虑添加边的顺序,根据乘法原理, ...
- 洛谷-笨小猴-NOIP2008提高组复赛
题目描述 Description 笨小猴的词汇量很小,所以每次做英语选择题的时候都很头疼.但是他找到了一种方法,经试验证明,用这种方法去选择选项的时候选对的几率非常大! 这种方法的具体描述如下:假设m ...
- luogu P4430 小猴打架(prufer编码与Cayley定理)
题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1) ...
- 洛谷P1120 小木棍
洛谷1120 小木棍 题目描述 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过50. 现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍和它们的长 ...
- 洛谷1373 小a和uim之大逃离
洛谷1373 小a和uim之大逃离 本题地址:http://www.luogu.org/problem/show?pid=1373 题目背景 小a和uim来到雨林中探险.突然一阵北风吹来,一片乌云从北 ...
- BZOJ1430: 小猴打架
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MBSubmit: 328 Solved: 234[Submit][Status] Descripti ...
- bzoj 1430: 小猴打架 -- prufer编码
1430: 小猴打架 Time Limit: 5 Sec Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是 ...
随机推荐
- 洛谷 题解 P2010 【回文日期】
因为有8个字符,所以可得出每一年只有一个回文日期. 因此只要判断每一年就行了. 做法: 我们先把年倒过来,例如2018年就倒为8102,就得出8102就是回文日期的后四个字符,我们只要判断一下有没有这 ...
- 《The C Programming Language》学习笔记
第五章:指针和数组 单目运算符的优先级均为2,且结合方向为自右向左. *ip++; // 将指针ip的值加1,然后获取指针ip所指向的数据的值 (*ip)++; // 将指针ip所指向的数据的值加1 ...
- poj3977(折半枚举+二分查找)
题目链接:https://vjudge.net/problem/POJ-3977 题意:给一个大小<=35的集合,找一个非空子集合,使得子集合元素和的绝对值最小,如果有多个这样的集合,找元素个数 ...
- AndroidStudio下载安装教程(图文教程)
场景 Android Studio 中文社区: http://www.android-studio.org/ 下载安装包,这里选择64位Windows 等待下载完成. 注: 博客: https://b ...
- SQL SERVER 根据字段名称批量设置为主键
--设置主键 --alter table 你的表名 add constraint pk_s primary key (id) SELECT 'alter table ' + TABLE_NAME + ...
- 【AtCoder】ARC067
ARC067 C - Factors of Factorial 这个直接套公式就是,先求出来每个质因数的指数幂,然后约数个数就是 \((1 + e_{1})(1 + e_{2})(1 + e_{3}) ...
- 线段树维护动态连续子段HDU1540
题意:http://acm.hdu.edu.cn/showproblem.php?pid=1540 #define IOS ios_base::sync_with_stdio(0); cin.tie( ...
- Laravel三种中间件的作用
$middleware 属性: 这个属性称为全局中间件,为什么说是全局中间件呢?因为你的每一次请求,这里面的每个中间件都会执行. $routeMiddleware 属性: 这个属性称为路由中间件,为什 ...
- MyBatis学习存档(5)——联表查询
之前的数据库操作都是基于一张表进行操作的,若一次查询涉及到多张表,那该如何进行操作呢? 首先明确联表查询的几个关系,大体可以分为一对一和一对多这两种情况,接下来对这两种情况进行分析: 一.建立表.添加 ...
- Spring Boot:上传文件大小超限制如何捕获 MaxUploadSizeExceededException 异常
Spring Boot 默认上传文件大小限制是 1MB,默认单次请求大小是 10MB,超出大小会跑出 MaxUploadSizeExceededException 异常 spring.servlet. ...