zoj 4122 Triangle City 2019山东省赛J题
题意:
给出一个无向图,类似三角形的样子,然后给出边的权值,问找一条从第一个点到最后一个点的路径,要求每一条边只能走一次,并且权值和最大,点可以重复走。
思路:
首先观察这个图可以发现,所有的点的度数都是偶数。然后由每条边只能走一次知道,这个是和欧拉路相关的,是欧拉道路,不是欧拉回路,因为题目要求是从一个点到另一个点。但是图的所有点的度数都是偶数,那么想办法让图中的第一个点和最后一个点度数变为奇数,其他点的度数都是偶数。这个就比较巧妙,去掉从第一个点到最后一个点的一条无重复点的路径,除了起点和终点度数减1,其它点的度数都减2,目的就达到了。由于题目要求最后走的边的权值和最大,所以去掉的边的权值尽量小,那么从起点到终点求一个最短路即可。
求路径的方法是首先标记最短路上的边,然后从起点或终点开始dfs,走过的每条边标记(注意这是无向图,所以反向路径也要标记),当一个点再无边可走的时候,就把它放入路径中,这样可以保证求出的一定是一个欧拉道路。
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N = 305;
const int inf = 0x3f3f3f3f;
struct edge
{
int u,v,cost;
edge(int u,int v,int cost):u(u),v(v),cost(cost){}
edge(){}
};
int a[N][N],b[N][N],c[N][N];
int mp[N][N];
vector<edge> es;
vector<int> G[N*N];
vector<pii> anc;
void adde(int u,int v,int cost)
{
es.push_back(edge(u,v,cost));
es.push_back(edge(v,u,cost));
int sz = es.size();
G[u].push_back(sz-2);
G[v].push_back(sz-1);
}
ll dis[N*N];
int rev[N*N];
bool vis[N*N];
bool used[N*N*8];
pii rid[N*N];
int cnt;
void spfa()
{
for (int i = 0;i <= cnt;i++) dis[i] = 1e18;
memset(vis,0,sizeof(vis));
memset(rev,0,sizeof(rev));
vis[1] = 1;
dis[1] = 0;
queue<int> q;
q.push(1);
while (!q.empty())
{
int u = q.front();
q.pop();
vis[u] = 0;
for (int i = 0;i < G[u].size();i++)
{
edge &e = es[G[u][i]];
int v = e.v;
if (dis[v] > dis[u] + e.cost)
{
dis[v] = dis[u] + e.cost;
rev[v] = G[u][i];
if (!vis[v])
{
vis[v] = 1;
q.push(v);
}
}
}
}
}
void dfs(int u)
{
for (int i = 0;i < G[u].size();i++)
{
int id = G[u][i];
edge &e = es[id];
if (!used[id])
{
used[id] = used[id^1] = 1;
int v = e.v;
dfs(v);
}
}
anc.push_back(rid[u]);
}
void init()
{
cnt = 0;
anc.clear();
es.clear();
for (int i = 0;i < N * N;i++) G[i].clear();
}
int main()
{
int t;
scanf("%d",&t);
while (t--)
{
int n;
scanf("%d",&n);
init();
ll ans = 0;
for (int i = 1;i < n;i++)
{
for (int j = 1;j <= i;j++)
{
scanf("%d",&a[i][j]);
ans += a[i][j];
}
}
for (int i = 1;i < n;i++)
{
for (int j = 1;j <= i;j++)
{
scanf("%d",&b[i][j]);
ans += b[i][j];
}
}
for (int i = 1;i < n;i++)
{
for (int j = 1;j <= i;j++)
{
scanf("%d",&c[i][j]);
ans += c[i][j];
}
}
for (int i = 1;i <= n;i++)
{
for (int j = 1;j <= i;j++)
{
mp[i][j] = ++cnt;
rid[cnt] = pii(i,j);
}
}
for (int i = 1;i < n;i++)
{
for (int j = 1;j <= i;j++)
{
int x = mp[i][j];
int y = mp[i+1][j];
adde(x,y,a[i][j]);
y = mp[i+1][j+1];
adde(x,y,b[i][j]);
x = mp[i+1][j];
y = mp[i+1][j+1];
adde(x,y,c[i][j]);
}
}
spfa();
ans -= dis[cnt];
memset(used,0,sizeof(used));
for (int i = cnt;i != 1;i = es[rev[i]].u)
{
used[rev[i]] = used[rev[i]^1] = 1;
}
dfs(cnt);
printf("%lld\n",ans);
printf("%d\n",(int)anc.size());
for (int i = 0;i < anc.size();i++)
{
printf("%d %d%c",anc[i].first,anc[i].second,i == anc.size() - 1 ? '\n' : ' ');
}
}
return 0;
}
zoj 4122 Triangle City 2019山东省赛J题的更多相关文章
- 山东省赛J题:Contest Print Server
Description In ACM/ICPC on-site contests ,3 students share 1 computer,so you can print your source c ...
- 2013年山东省赛F题 Mountain Subsequences
2013年山东省赛F题 Mountain Subsequences先说n^2做法,从第1个,(假设当前是第i个)到第i-1个位置上哪些比第i位的小,那也就意味着a[i]可以接在它后面,f1[i]表示从 ...
- hdu6578 2019湖南省赛D题Modulo Nine 经典dp
目录 题目 解析 AC_Code @ 题目 第一题题意是一共有{0,1,2,3}四种数字供选择,问有多少个长度为n的序列满足所有m个条件,每个条件是说区间[L,R]内必须有恰好x个不同的数字. 第二题 ...
- HEX SDUT 3896 17年山东省赛D题
HEX SDUT 3896 17年山东省赛D题这个题是从矩形的左下角走到右上角的方案数的变形题,看来我对以前做过的题理解还不是太深,或者是忘了.对于这种题目,直接分析它的性质就完事了.从(1,1)走到 ...
- luogu 1327 数列排序 & 2017 ACM-ICPC 亚洲区(南宁赛区)网络赛 J题 循环节
luogu 1327 数列排序 题意 给定一个数列\(\{an\}\),这个数列满足\(ai≠aj(i≠j)\),现在要求你把这个数列从小到大排序,每次允许你交换其中任意一对数,请问最少需要几次交换? ...
- HDU 4800/zoj 3735 Josephina and RPG 2013 长沙现场赛J题
第一年参加现场赛,比赛的时候就A了这一道,基本全场都A的签到题竟然A不出来,结果题目重现的时候1A,好受打击 ORZ..... 题目链接:http://acm.hdu.edu.cn/showprobl ...
- 模拟 2013年山东省赛 J Contest Print Server
题目传送门 /* 题意:每支队伍需求打印机打印n张纸,当打印纸数累计到s时,打印机崩溃,打印出当前打印的纸数,s更新为(s*x+y)%mod 累计数清空为0,重新累计 模拟简单题:关键看懂题意 注意: ...
- The 10th Shandong Provincial Collegiate Programming Contest 2019山东省赛游记+解题报告
比赛结束了几天...这篇博客其实比完就想写了...但是想等补完可做题顺便po上题解... 5.10晚的动车到了济南,没带外套有点凉.酒店还不错. 5.11早上去报道,济南大学好大啊...感觉走了一个世 ...
- [2019上海网络赛J题]Stone game
题目链接 CSLnb! 题意是求出给定集合中有多少个合法子集,合法子集的定义为,子集和>=总和-子集和$\& \&$子集和-(子集的子集和)<=总和-子集和. 其实就是很简 ...
随机推荐
- 【CodeForces - 707B】Bakery(思维水题)
Bakery Descriptions 玛莎想在从1到n的n个城市中开一家自己的面包店,在其中一个城市烘焙松饼. 为了在她的面包房烘焙松饼,玛莎需要从一些储存的地方建立面粉供应.只有k个仓库,位于不同 ...
- linux下安装mysql5.7方法与常见问题
linux上安装mysql5.7 1.下载tar包,这里使用wget从官网下载 wget https://dev.mysql.com/get/Downloads/MySQL-5.7/mysql-5.7 ...
- OpenResty + Lua + Kafka 实现日志收集系统以及部署过程中遇到的坑
********************* 部署过程 ************************** 一:场景描述 对于线上大流量服务或者需要上报日志的nginx服务,每天会产生大量的日志,这些 ...
- poj3714 Raid(分治求平面最近点对)
题目链接:https://vjudge.net/problem/POJ-3714 题意:给定两个点集,求最短距离. 思路:在平面最近点对基础上加了个条件,我么不访用f做标记,集合1的f为1,集合2的f ...
- ARST第四周打卡
Algorithm : 做一个 leetcode 的算法题 ////////////////////////////////////////////////////////////////////// ...
- 1-python django的创建
一.Virtualenv(我的python环境是3.7) 1.虚拟环境创建(针对python版本和django的版本不一致的) 输入 pip install virtuallenv ,看到如下信息就是 ...
- 同步锁 死锁与递归锁 信号量 线程queue event事件
二个需要注意的点: 1 线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock任然没有被释放则阻塞,即便是拿到执行权限GIL也要 ...
- python 安装PostgreSQL 模块:psycopg2
官方资料:http://www.psycopg.org/psycopg/docs/ 安装: yum -y install python-psycopg2 (安装的版本可能是2.0) pip insta ...
- DashBoard-身份验证
dashboard1.7.1版本之后,新增了用户登录认证的功能. 默认dashboard会跳转到登录页面: 我们可以看到dashboard提供了Kubeconfig和token两种登录方式,我们可以直 ...
- 牛客 70E 乌龟跑步 (bitset优化dp)
有一只乌龟,初始在0的位置向右跑. 这只乌龟会依次接到一串指令,指令T表示向后转,指令F表示向前移动一个单位.乌龟不能忽视任何指令.现在我们要修改其中正好n个指令(一个指令可以被改多次,一次修改定义为 ...