Class tf.contrib.rnn.MultiRNNCell  新版

Class tf.nn.rnn_cell.MultiRNNCell

构建多隐层神经网络

__init__(cells, state_is_tuple=True)

cells:rnn cell 的list

state_is_tuple:true,状态Ct和ht就是分开记录,放在一个tuple中,接受和返回的states是n-tuples,其中n=len(cells),False,states是concatenated沿着列轴.后者即将弃用。

BasicLSTMCell 单隐层

BasicLSTMCell 多隐层

代码示例

# encoding:utf-8
import tensorflow as tf batch_size=10
depth=128 inputs=tf.Variable(tf.random_normal([batch_size,depth])) previous_state0=(tf.random_normal([batch_size,100]),tf.random_normal([batch_size,100]))
previous_state1=(tf.random_normal([batch_size,200]),tf.random_normal([batch_size,200]))
previous_state2=(tf.random_normal([batch_size,300]),tf.random_normal([batch_size,300])) num_units=[100,200,300]
print(inputs) cells=[tf.nn.rnn_cell.BasicLSTMCell(num_unit) for num_unit in num_units]
mul_cells=tf.nn.rnn_cell.MultiRNNCell(cells) outputs,states=mul_cells(inputs,(previous_state0,previous_state1,previous_state2)) print(outputs.shape) #(10, 300)
print(states[0]) #第一层LSTM
print(states[1]) #第二层LSTM
print(states[2]) ##第三层LSTM
print(states[0].h.shape) #第一层LSTM的h状态,(10, 100)
print(states[0].c.shape) #第一层LSTM的c状态,(10, 100)
print(states[1].h.shape) #第二层LSTM的h状态,(10, 200)

输出

(10, 300)
LSTMStateTuple(c=<tf.Tensor 'multi_rnn_cell/cell_0/basic_lstm_cell/Add_1:0' shape=(10, 100) dtype=float32>, h=<tf.Tensor 'multi_rnn_cell/cell_0/basic_lstm_cell/Mul_2:0' shape=(10, 100) dtype=float32>)
LSTMStateTuple(c=<tf.Tensor 'multi_rnn_cell/cell_1/basic_lstm_cell/Add_1:0' shape=(10, 200) dtype=float32>, h=<tf.Tensor 'multi_rnn_cell/cell_1/basic_lstm_cell/Mul_2:0' shape=(10, 200) dtype=float32>)
LSTMStateTuple(c=<tf.Tensor 'multi_rnn_cell/cell_2/basic_lstm_cell/Add_1:0' shape=(10, 300) dtype=float32>, h=<tf.Tensor 'multi_rnn_cell/cell_2/basic_lstm_cell/Mul_2:0' shape=(10, 300) dtype=float32>)
(10, 100)
(10, 100)
(10, 200)

tf.nn.rnn_cell.MultiRNNCell的更多相关文章

  1. tf.nn.dynamic_rnn

    tf.nn.dynamic_rnn(cell,inputs,sequence_length=None, initial_state=None,dtype=None, parallel_iteratio ...

  2. tensorflow笔记6:tf.nn.dynamic_rnn 和 bidirectional_dynamic_rnn:的输出,output和state,以及如何作为decoder 的输入

    一.tf.nn.dynamic_rnn :函数使用和输出 官网:https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn 使用说明: A ...

  3. 深度学习原理与框架-递归神经网络-RNN网络基本框架(代码?) 1.rnn.LSTMCell(生成单层LSTM) 2.rnn.DropoutWrapper(对rnn进行dropout操作) 3.tf.contrib.rnn.MultiRNNCell(堆叠多层LSTM) 4.mlstm_cell.zero_state(state初始化) 5.mlstm_cell(进行LSTM求解)

    问题:LSTM的输出值output和state是否是一样的 1. rnn.LSTMCell(num_hidden, reuse=tf.get_variable_scope().reuse)  # 构建 ...

  4. tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别

    tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别 https://blog.csdn.net/u014365862/article/details/78238 ...

  5. TF-卷积函数 tf.nn.conv2d 介绍

    转自 http://www.cnblogs.com/welhzh/p/6607581.html 下面是这位博主自己的翻译加上测试心得 tf.nn.conv2d是TensorFlow里面实现卷积的函数, ...

  6. tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例

    tf.nn.embedding_lookup TensorFlow embedding_lookup 函数最简单实例 #!/usr/bin/env python # -*- coding: utf-8 ...

  7. tf.nn.conv2d 和 tf.nn.max_pool 中 padding 分别为 'VALID' 和 'SAME' 的直觉上的经验和测试代码

    这个地方一开始是迷糊的,写代码做比较分析,总结出直觉上的经验. 某人若想看精准的解释,移步这个网址(http://blog.csdn.net/fireflychh/article/details/73 ...

  8. 【TensorFlow基础】tf.add 和 tf.nn.bias_add 的区别

    1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, ...

  9. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

随机推荐

  1. Inotify&Sersync文件监视工具配置

    一.Inotify介绍:一共安装2个工具(命令),即inotifywait和inotifywatchinotifywait:在被监控的文件或目录上等待特定文件系统事件(open.close.delet ...

  2. 老老实实学WCF

    老老实实学WCF 第三篇 在IIS中寄宿服务 通过前两篇的学习,我们了解了如何搭建一个最简单的WCF通信模型,包括定义和实现服务协定.配置服务.寄宿服务.通过添加服务引用的方式配置客户端并访问服务.我 ...

  3. LeetCode--263--丑数

    问题描述: 编写一个程序判断给定的数是否为丑数. 丑数就是只包含质因数 2, 3, 5 的正整数. 示例 1: 输入: 6 输出: true 解释: 6 = 2 × 3 示例 2: 输入: 8 输出: ...

  4. ubuntu14.04+MatlabR2014a+caffe

    一.下载matlab 1 sudo mkdir /media/matlab 2 sudo mount -o loop [path]MATHWORKS_R2014A.iso /media/matlab ...

  5. Build Castles(构建城堡)

    Charlemagne, the King of Frankie, 英文描述 请参考图片中的说明. 中文描述 根据给出的数组确定能够盖多少城堡. 思路和点评 我不能确定我的思路是正确的,也欢迎大家参与 ...

  6. Confluence 6 权限概述

    下面的权限可以指派给任何一个空间: 分类 权限 全部(All) 查看(View )给你能够查看空间内容的权限,包括有空间目录和其他的内容,例如主面板. 删除自己(Delete own) 给你权限删除你 ...

  7. 线性、逻辑回归的java实现

    线性回归和逻辑回归的实现大体一致,将其抽象出一个抽象类Regression,包含整体流程,其中有三个抽象函数,将在线性回归和逻辑回归中重写. 将样本设为Sample类,其中采用数组作为特征的存储形式. ...

  8. python-day73--django课上项目01

    from django.db import models # Create your models here. class Book(models.Model): name=models.CharFi ...

  9. leetcode-algorithms-6 ZigZag Conversion

    leetcode-algorithms-6 ZigZag Conversion The string "PAYPALISHIRING" is written in a zigzag ...

  10. js向一个数组中插入元素的几个方法-性能比较

    向一个数组中插入元素是平时很常见的一件事情.你可以使用push在数组尾部插入元素,可以用unshift在数组头部插入元素,也可以用splice在数组中间插入元素. 但是这些已知的方法,并不意味着没有更 ...