Deep Learning系统实训之一:深度学习基础知识
K-近邻与交叉验证
1 选取超参数的正确方法是:将原始训练集分为训练集和验证集,我们在验证集上尝试不同的超参数,最后保留表现最好的那个。
2 如果训练数据量不够,使用交叉验证法,它能帮助我们在选取最优超参数的时候减少噪音。
3 一旦找到最优的超参数,就让算法以该参数在测试集跑且只跑一次,并根据测试结果评价算法。
4 最近邻分类器能够在CIFAR-10上得到将近40%的准确率。该算法简单易实现,但需要存储所有训练数据,并且在测试时过于消耗计算能力。
5 最后,我们知道了仅仅使用L1和L2范数来进行像素比较是不够的,图像更多的是按照背景和颜色被分类,而不是语义主体本身。
1 预处理你的数据:对你数据中的特征进行归一化(normalize),让其具有零平均值(zero mean)和单位方差(unit variance)。
2 如果数据是高维数据,考虑使用降维方法。如PCA。
3 将数据随机分入训练集和验证集。按照一般规律,70%-90%数据作为训练集。
4 在验证集上调优,尝试足够多的K值,尝试L1和L2两种范数计算方式。
超参数(曼哈顿距离与欧氏距离):
损失函数:
任何一个算法都会有一个损失函数。
我们希望损失为零,为什么呢?损失越多说明我们错的越多,损失为零说明我们没做错啊。o(* ̄︶ ̄*)o
Softmax分类器:
Sigmoid函数:
softmax实例:
Deep Learning系统实训之一:深度学习基础知识的更多相关文章
- Deep Learning系统实训之三:卷积神经网络
边界填充(padding):卷积过程中,越靠近图片中间位置的像素点越容易被卷积计算多次,越靠近边缘的像素点被卷积计算的次数越少,填充就是为了使原来边缘像素点的位置变得相对靠近中部,而我们又不想让填充的 ...
- Deep Learning系统实训之二:梯度下降原理
基本概念理解: 一个epoch:当前所有数据都跑(迭代)了一遍: 那么两个epoch,就是把所有数据跑了两遍,三个epoch就是把所有数据跑了三遍,以此类推. batch_size:每次迭代多少个数据 ...
- 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)
Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
- deep learning framework(不同的深度学习框架)
常用的deep learning frameworks 基本转自:http://www.codeceo.com/article/10-open-source-framework.html 1. Caf ...
- [笔记] 基于nvidia/cuda的深度学习基础镜像构建流程 V0.2
之前的[笔记] 基于nvidia/cuda的深度学习基础镜像构建流程已经Out了,以这篇为准. 基于NVidia官方的nvidia/cuda image,构建适用于Deep Learning的基础im ...
- 算法工程师<深度学习基础>
<深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构, ...
- 深度学习基础系列(九)| Dropout VS Batch Normalization? 是时候放弃Dropout了
Dropout是过去几年非常流行的正则化技术,可有效防止过拟合的发生.但从深度学习的发展趋势看,Batch Normalizaton(简称BN)正在逐步取代Dropout技术,特别是在卷积层.本文将首 ...
- 深度学习基础系列(五)| 深入理解交叉熵函数及其在tensorflow和keras中的实现
在统计学中,损失函数是一种衡量损失和错误(这种损失与“错误地”估计有关,如费用或者设备的损失)程度的函数.假设某样本的实际输出为a,而预计的输出为y,则y与a之间存在偏差,深度学习的目的即是通过不断地 ...
随机推荐
- kafka channle的应用案例
kafka channle的应用案例 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 最近在新公司负责大数据平台的建设,平台搭建完毕后,需要将云平台(我们公司使用的Ucloud的 ...
- my phone blackberry classic / passport / priv / keyone
smy blackberry classic PIN: 2BF66A72 / 查看手机位置https://protect.blackberry.com/protect/mydevice#BlackBe ...
- HBase基础之常用过滤器hbase shell操作
创建表 create 'test1', 'lf', 'sf' lf: column family of LONG values (binary value) -- sf: column family ...
- Eclipse快捷键大全,导包快捷键:ctrl+Shift+/【转】
Ctrl+Shift+L 显示所有快捷键 Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复 ...
- spring boot 2.0.3+spring cloud (Finchley)1、搭建服务注册和发现组件Eureka 以及构建高可用Eureka Server集群
一 .搭建Eureka 编写Eureka Server 由于有多个spring boot项目,采用maven多module的结构,项目结构如下: 新建一个maven主工程,在主maven的pom文件中 ...
- CodeForces-915C Permute Digits
C. Permute Digits time limit per test 1 second memory limit per test 256 megabytes input standard in ...
- 机器学习课程-第8周-降维(Dimensionality Reduction)—主成分分析(PCA)
1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快 ...
- MySQL数据库中.SQL文件的导出方式
转自:http://tech.watchstor.com/management-117401.htm 在MySQL数据库中导入SQL文件是件很麻烦的事情,但是这是一项大家非常值得学习的技术,本文就从最 ...
- 5W2H分析法
- JS ——document、“或”、event(事件对象)
1.document <document>是所以HTML的最高节点,比<html>的等级还要高. <document>的第一个子节点是“!”——document.c ...