bzoj 4184: shallot (线段树维护线性基)
题面
$ solution: $
这一题绝对算的上是一道经典的例题,它向我们诠释了一种新的线段树维护方式。像这一类需要加入又需要维护删除的问题,我们曾经是遇到过的像莫对,线段树.......但是我们并没有真正把它与一些数据结构结合在一起过,像线性基,凸包都是只支持加入,不支持删除的。我们需要找一种 $ O(nlogn) $ 的方案让他们也支持删除。
本题就可以用线段树维护线性基,那它的原理是什么呢,它为什么能让线性基支持删除操作了呢?其实我们看到线段树时就可以知道,它其实是维护的是时间轴,线性基是只能加,那我们就让它在合适的时间加对应的东西,而线段树就是维护的后者。这里我们必须好好思考一下(这对我们思考题目建模很有必要),比如本题做法相当于在线段树每个节点都建了一个线性基,它用空间的消耗来换取了时间的优化,这个原理在主席树中也是可见一斑的。
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
#define pb push_back
#define midd int mid=(l+r)>>1
#define klr int k,int l,int r
#define zuo k<<1,l,mid
#define you k<<1|1,mid+1,r
using namespace std;
map<int,int> h;
vector<int> a[500005<<2];
int d[31];
int n,v,sl,sr;
int c[500005];
struct ji{
int b[31];
ji(){memset(b,0,sizeof(0));}
inline void add(int x){
for(rg i=30;i>=0;--i)
if(x&d[i]){
if(b[i])x^=b[i];
else {b[i]=x;return;}
}
}
inline int ask(){
int res=0;
for(rg i=30;i>=0;--i)
if(b[i]&&!(res&d[i]))res^=b[i];
return res;
}
}base;
inline int qr(){
char ch; int sign=1;
while((ch=getchar())<'0'||ch>'9')
if(ch=='-')sign=-1;
int res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=res*10+(ch^48);
return res*sign;
}
inline void add(klr){
if(sl<=l&&r<=sr){ a[k].pb(-v); return ;}
midd; if(sl<=mid)add(zuo); if(sr>mid)add(you);
}
inline void dfs(klr,ji t){
for(rg i=0,j=a[k].size();i<j;++i) t.add(a[k][i]);
if(l==r){printf("%d\n",t.ask());return ;}
midd; dfs(zuo,t); dfs(you,t);
}
int main(){
freopen("team.in","r",stdin);
freopen("team.out","w",stdout);
n=qr();
for(rg i=30;i>=0;--i)d[i]=1<<i;
for(rg i=1;i<=n;++i){
if((c[i]=v=qr())>=0)h[v]=i;
else sl=h[-v],h[-v]=0,sr=i-1,add(1,1,n);
}
for(rg i=1;i<=n;++i)
if(c[i]>0&&h[c[i]])
sl=h[c[i]],sr=n,v=-c[i],add(1,1,n);
dfs(1,1,n,base);
return 0;
}
bzoj 4184: shallot (线段树维护线性基)的更多相关文章
- BZOJ.4184.shallot(线段树分治 线性基)
BZOJ 裸的线段树分治+线性基,就是跑的巨慢_(:з」∠)_ . 不知道他们都写的什么=-= //41652kb 11920ms #include <map> #include < ...
- bzoj 4184 shallot——线段树分治+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4184 本来想了可持久化trie,不过空间是 nlogn (出一个节点的时候把 tot 复原就 ...
- 【BZOJ4184】shallot 线段树+vector+线性基
[BZOJ4184]shallot Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从 ...
- BZOJ4184:shallot(线段树分治,线性基)
Description 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且 让小葱 ...
- 2017西安区域赛A / UVALive - 8512 线段树维护线性基合并
题意:给定\(a[1...n]\),\(Q\)次询问求\(A[L...R]\)的异或组合再或上\(K\)的最大值 本题是2017的西安区域赛A题,了解线性基之后你会发现这根本就是套路题.. 只要用线段 ...
- 线段树维护线性基并——17西安icpc a
#include<bits/stdc++.h> using namespace std; #define N 10005 int a[N],n,k,q; struct LB{ ]; LB( ...
- 牛客多校第三次B——线段树维护线性基交
写线性基交函数时调试了半天.. #include<bits/stdc++.h> using namespace std; #define ll long long #define maxn ...
- $CF938G\ Shortest\ Path\ Queries$ 线段树分治+线性基
正解:线段树分治+线性基 解题报告: 传送门$QwQ$ 考虑如果只有操作3,就这题嘛$QwQ$ 欧克然后现在考虑加上了操作一操作二 于是就线段树分治鸭 首先线段树叶子节点是询问嘛这个不用说$QwQ$. ...
- LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset
题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...
随机推荐
- selenium之调用Javascript
selenium调用Javascript使用方法: driver.execute_script(js) 使用JS获取元素文本值,代码片段如下: ...... js = "return $(' ...
- python之zip函数和sorted函数
# zip()函数和sorted()函数 # zip()函数:将两个序列合并,返回zip对象,可强制转换为列表或字典 # sorted()函数:对序列进行排序,返回一个排序后的新列表,原数据不改变 # ...
- 今天一天课,随便写点吧/xk
知道的越多,不知道的也就越多. 最近想学很多很多东西,但是发现没有一个计划,也没有那么多时间精力,都是想到哪学到哪,有的就是学了一半就放下了,又去学新的,感觉需要规划一下学习路线,时间什么的 推荐一个 ...
- Android recording 录音功能 简单使用小实例
package com.app.recordingtest; import java.io.File; import java.io.IOException; import android.app.A ...
- 洛谷 P2764 最小路径覆盖问题 解题报告
P2764 最小路径覆盖问题 问题描述: 给定有向图\(G=(V,E)\).设\(P\) 是\(G\) 的一个简单路(顶点不相交)的集合.如果\(V\) 中每个顶点恰好在\(P\) 的一条路上,则称\ ...
- bzoj1494 生成树计数 (dp+矩阵快速幂)
题面欺诈系列... 因为一个点最多只能连到前k个点,所以只有当前的连续k个点的连通情况是对接下来的求解有用的 那么就可以计算k个点的所有连通情况,dfs以下发现k=5的时候有52种. 我们把它们用类似 ...
- Hadoop、Hbase基本命令及调优方式
HDFS基本命令 接触大数据挺长时间了,项目刚刚上完线,趁着空闲时间整理下大数据hadoop.Hbase等常用命令以及各自的优化方式,当做是一个学习笔记吧. HDFS命令基本格式:Hadoop fs ...
- Git中设置代理和取消代理
设置Socks5代理 git config --global http.proxy 'socks5://127.0.0.1:1080' && git config --global h ...
- 洛谷P1600 天天爱跑步
天天放毒... 首先介绍一个树上差分. 每次进入的时候记录贡献,跟出来的时候的差值就是子树贡献. 然后就可以做了. 发现考虑每个人的贡献有困难. 于是考虑每个观察员的答案. 把路径拆成两条,以lca分 ...
- 蛋白质结构模型和功能预测:I-TASSER工具的使用
I-TASSER是一款用于预测蛋白质结构和功能的工具,网站链接:https://zhanglab.ccmb.med.umich.edu/I-TASSER/ 具体描述如下: I-TASSER (Iter ...