题目链接:http://codeforces.com/problemset/problem/677/D

题意:

有 $n \times m$ 的网格,每个网格上有一个棋子,棋子种类为 $t[i][j]$,棋子的种类数为 $p$。

现在出发点为 $(1,1)$,必须按照种类 $1 \sim p$ 进行移动,即从种类 $x$ 的棋子出发,下一个目标必须是 $x+1$ 才行,直到走到种类为 $p$ 的棋子就终止。求最短路径。

题解:

我们先把棋子按照种类分组,分成 $p$ 组。

$dp[i][j]$ 表示到达目前这个棋子的最短路,那么转移方程为 $dp[i][j] = min(dp[i][j],dp[x][y]+|x-i|+|y-j|)$,其中 $(x,y)$ 为上一组中所有棋子的坐标。

然后要是直接暴力的状态转移的话,是要TLE的,考虑进行优化。

考虑一个界限 $K$,假设当前组为 $T[i]$,上一组为 $T[i-1]$,

那么当 $T[i].size \le K$ 时,我们就用继续用上面的暴力动态转移,那么对于所有的“上一组”点数加起来不会差过 $nm$,因此总时间复杂度 $O(K \cdot nm)$;

如果 $T[i].size > K$,我们在网格上进行多源点的优先队列BFS(或者说优先队列dijkstra),源点是所有的 $T[i-1]$ 组内的点,搜出到所有 $T[i]$ 组内的点的最短距离,这样BFS最多跑一遍所有网格,时间复杂度 $O(nm \log(nm))$;由于这样的组数目不会超过 $\frac{nm}{K}$ 个,所以总时间复杂度为 $O(\frac{nm}{K} nm \log(nm) )$。

这样一来,两种加起来的总时间复杂度就是 $O(Knm+\frac{nm}{K}nm\log(nm) ) = O( nm (K + \frac{nm\log(nm)}{K}) )$,由此可知取 $K=\sqrt{nm \log(nm) }$ 时,时间复杂度最小,为 $O(nm\sqrt{nm\log(nm)})$。

AC代码:

#include<bits/stdc++.h>
#define idx(x,y) ((x-1)*m+y)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
using namespace std;
typedef pair<int,int> P; const int INF=0x3f3f3f3f;
const int maxn=; int n,m,p,ed,K;
P pos[maxn*maxn];
vector<int> T[maxn*maxn]; int dp[maxn*maxn];
int dist(const P& u,const P& v) {
return abs(u.fi-v.fi)+abs(u.se-v.se);
} int dx[]={,,-,};
int dy[]={,,,-};
int d[maxn*maxn]; bool vis[maxn*maxn];
priority_queue< P, vector<P>, greater<P> > Q; int main()
{
ios::sync_with_stdio();
cin.tie(), cout.tie(); cin>>n>>m>>p;
K=sqrt(n*m*log2(n*m));
for(int i=,tp;i<=n;i++)
{
for(int j=;j<=m;j++)
{
cin>>tp;
T[tp].push_back(idx(i,j));
pos[idx(i,j)]=mp(i,j);
if(tp==p) ed=idx(i,j);
}
} memset(dp,0x3f,sizeof(dp));
for(auto v:T[]) dp[v]=dist(mp(,),pos[v]);
for(int i=;i<=p;i++)
{
if(T[i].size()<=K)
{
for(auto v:T[i])
for(auto u:T[i-])
dp[v]=min(dp[v],dp[u]+dist(pos[u],pos[v]));
}
else
{
memset(d,0x3f,sizeof(d));
memset(vis,,sizeof(vis));
for(auto u:T[i-]) d[u]=dp[u], Q.push(mp(d[u],u));
while(Q.size())
{
int u=Q.top().se; Q.pop();
if(vis[u]) continue;
vis[u]=;
for(int k=;k<;k++)
{
if(pos[u].fi+dx[k]< || pos[u].fi+dx[k]>n) continue;
if(pos[u].se+dy[k]< || pos[u].se+dy[k]>n) continue;
int v=idx(pos[u].fi+dx[k],pos[u].se+dy[k]);
if(vis[v]) continue;
if(d[v]>d[u]+) d[v]=d[u]+, Q.push(mp(d[v],v));
}
} for(auto v:T[i]) dp[v]=d[v];
}
}
cout<<dp[ed]<<endl;
}

Codeforces 677D - Vanya and Treasure - [DP+优先队列BFS]的更多相关文章

  1. Codeforces 677D Vanya and Treasure 暴力+BFS

    链接 Codeforces 677D Vanya and Treasure 题意 n*m中有p个type,经过了任意一个 type=i 的各自才能打开 type=i+1 的钥匙,最初有type=1的钥 ...

  2. CodeForces 677D. Vanya and Treasure 枚举行列

    677D. Vanya and Treasure 题意: 给定一张n*m的图,图上每个点标有1~p的值,你初始在(1,1)点,你必须按照V:1,2,3...p的顺序走图上的点,问你如何走时间最少. 思 ...

  3. CodeForces 677D Vanya and Treasure

    $dp$,树状数组. 很明显这是一个$DAG$上的$dp$,由于边太多,暴力$dp$会超时,需要优化. 例如计算$dp[x][y]$,可以将区域分成四块,$dp[x][y]$取四块中的最小值,每一块用 ...

  4. Codeforces Round #355 (Div. 2) D. Vanya and Treasure dp+分块

    题目链接: http://codeforces.com/contest/677/problem/D 题意: 让你求最短的从start->...->1->...->2->. ...

  5. codeforces 677D D. Vanya and Treasure(二维线段树)

    题目链接: D. Vanya and Treasure time limit per test 1.5 seconds memory limit per test 256 megabytes inpu ...

  6. Codeforces Round #355 (Div. 2) D. Vanya and Treasure 分治暴力

    D. Vanya and Treasure 题目连接: http://www.codeforces.com/contest/677/problem/D Description Vanya is in ...

  7. codeforces 677D(分层图dp)

    Codeforces 677D 传送门:https://codeforces.com/contest/677/problem/D 题意: 给你一个n*m的方格图,每个点有一个权值val,现在要求你从坐 ...

  8. Codeforces 981 共同点路径覆盖树构造 BFS/DP书架&最大值

    A /*Huyyt*/ #include<bits/stdc++.h> #define mem(a,b) memset(a,b,sizeof(a)) #define pb push_bac ...

  9. 题解-CF677D Vanya and Treasure

    CF677D Vanya and Treasure 有一个 \(n\times m\) 的矩阵 \(a(1\le a_{i,j}\le p)\),求从起点 \((1,1)\) 出发依次遍历值为 \(1 ...

随机推荐

  1. 自动化测试中CSS SELECTOR选择器的一些写法

    常见符号: #表示id .表示class >表示子元素,层级 一个空格也表示子元素,但是是所有的后代子元素,相当于xpath中的相对路径 #input 选择id为input的节点 .Volvo ...

  2. 整死你个妖精,CDN西游捉妖记!

    CDN的降价潮和撕逼季已过,终于轮到小黑羊来做个科普啦. 这事儿,要从西游记取经开始…… [本图来自肖传湛个人网站:www.moko.cc/hiyoko] 1300年前,唐僧师徒取经要跋涉十万八千里, ...

  3. R语言编程艺术#01#数据类型向量(vector)

    R语言最基本的数据类型-向量(vector) 1.插入向量元素,同一向量中的所有的元素必须是相同的模式(数据类型),如整型.数值型(浮点数).字符型(字符串).逻辑型.复数型等.查看变量的类型可以用t ...

  4. PHP——自定义比较算法

    很多时候,程序都是直接写好逻辑运算,提供给用户的是一个值,然后后台去比较:但是有时会提供一种类似计算器一样的交互方式的时候,PHP只能读懂用户的输入来进行比较了- 最近的一个项目涉及到一个由用户自定义 ...

  5. nodeJs--模块module.exports与实例化方法

    在nodejs中,提供了exports 和 require 两个对象,其中 exports 是模块公开的接口,require 用于从外部获取一个模块的接口,即所获取模块的 exports 对象.而在e ...

  6. linux下编译安装pthreads扩展

    这里讲的是如何编译安装pthreads,以后编译安装其他PHP扩展可以参考此方法. 下载pthreads源码:http://pecl.php.net/package/pthreads 首先确定安装的p ...

  7. PentesterLab渗透演练平台

    转载自: https://www.blackh4t.org/archives/1143.html http://www.91ri.org/5958.html     1.  什么是WebApp Pen ...

  8. [转]《RabbitMQ官方指南》安装指南

    原文链接   翻译:xiezc 目录(其中的文章后续翻译): Windows下安装 Debian / Ubuntu下安装 基于RPM的Linux下安装 Mac OS X下安装 Homebrew安装 W ...

  9. CAD技巧之002——如何用Cass内插高程点或者说加密高程点

    CAD技巧之002——如何用Cass内插高程点或者说加密高程点 很多同志如果遇到奇葩的Cass内插高程点或者说加密高程点,怎么办,一个个编辑?如果工作量很大,怎么办呢. 今天九天就教您一个好方法! 废 ...

  10. hdoj:2036

    #include <iostream> using namespace std; struct Point { int x, y; }; Point a[]; int main() { i ...