字典树优化DP

                               Remember the Word
Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

[Submit]   [Go Back]   [Status]

Description

 

Neal is very curious about combinatorial problems, and now here comes a problem about words. Knowing that Ray has a photographic memory and this may not trouble him, Neal gives it to Jiejie.

Since Jiejie can't remember numbers clearly, he just uses sticks to help himself. Allowing for Jiejie's only 20071027 sticks, he can only record the remainders of the numbers divided by total amount of sticks.

The problem is as follows: a word needs to be divided into small pieces in such a way that each piece is from some given set of words. Given a word and the set of words, Jiejie should calculate the number of ways the given word can be divided, using the words in the set.

Input

The input file contains multiple test cases. For each test case: the first line contains the given word whose length is no more than 300 000.

The second line contains an integer S<tex2html_verbatim_mark> , 1S4000<tex2html_verbatim_mark> .

Each of the following S<tex2html_verbatim_mark> lines contains one word from the set. Each word will be at most 100 characters long. There will be no two identical words and all letters in the words will be lowercase.

There is a blank line between consecutive test cases.

You should proceed to the end of file.

Output

For each test case, output the number, as described above, from the task description modulo 20071027.

Sample Input

  1. abcd
  2. 4
  3. a
  4. b
  5. cd
  6. ab

Sample Output

  1. Case 1: 2
  1. #include <iostream>
  2. #include <cstdio>
  3. #include <cstring>
  4. #include <string>
  5.  
  6. using namespace std;
  7.  
  8. const int MOD=;
  9. const int maxn=;
  10.  
  11. int m,dp[];
  12. char str[];
  13.  
  14. struct Trie
  15. {
  16. int tot,root,child[maxn][];
  17. bool flag[maxn];
  18. Trie()
  19. {
  20. memset(child[],,sizeof(child[]));
  21. flag[]=false;
  22. root=tot=;
  23. }
  24. void Init()
  25. {
  26. memset(child[],,sizeof(child[]));
  27. flag[]=false;
  28. root=tot=;
  29. }
  30. void Insert(const char*str)
  31. {
  32. int *cur=&root;
  33. for(const char *p=str;*p;p++)
  34. {
  35. cur=&child[*cur][*p-'a'];
  36. if(*cur==)
  37. {
  38. *cur=++tot;
  39. memset(child[tot],,sizeof(child[tot]));
  40. flag[tot]=false;
  41. }
  42. }
  43. flag[*cur]=true;
  44. }
  45. bool query(const char* str,int i)
  46. {
  47. int *cur=&root;
  48. int l=;
  49. for(const char*p=str;*p&&*cur;p++,l++)
  50. {
  51. cur=&child[*cur][*p-'a'];
  52. if(flag[*cur])
  53. {
  54. dp[i]=(dp[i]+dp[i+l])%MOD;
  55. }
  56. }
  57. return (*cur&&flag[*cur]);
  58. }
  59. }tree;
  60.  
  61. int main()
  62. {
  63. int cas=;
  64. while(scanf("%s",str)!=EOF)
  65. {
  66. int len=strlen(str);
  67. scanf("%d",&m);
  68. tree.Init();
  69. while(m--)
  70. {
  71. char dic[];
  72. scanf("%s",dic);
  73. tree.Insert(dic);
  74. }
  75. memset(dp,,sizeof(dp));
  76. dp[len]=;
  77. for(int i=len-;i>=;i--)
  78. {
  79. tree.query(str+i,i);
  80. }
  81. printf("Case %d: %d\n",cas++,dp[]%MOD);
  82. }
  83. return ;
  84. }

UVA 1401 Remember the Word的更多相关文章

  1. UVA 1401 - Remember the Word(Trie+DP)

    UVA 1401 - Remember the Word [题目链接] 题意:给定一些单词.和一个长串.问这个长串拆分成已有单词,能拆分成几种方式 思路:Trie,先把单词建成Trie.然后进行dp. ...

  2. UVA 1401 Remember the Word(用Trie加速动态规划)

    Remember the Word Neal is very curious about combinatorial problems, and now here comes a problem ab ...

  3. LA 3942 && UVa 1401 Remember the Word (Trie + DP)

    题意:给你一个由s个不同单词组成的字典和一个长字符串L,让你把这个长字符串分解成若干个单词连接(单词是可以重复使用的),求有多少种.(算法入门训练指南-P209) 析:我个去,一看这不是一个DP吗?刚 ...

  4. UVA - 1401 Remember the Word(trie+dp)

    1.给一个串,在给一个单词集合,求用这个单词集合组成串,共有多少种组法. 例如:串 abcd, 单词集合 a, b, cd, ab 组合方式:2种: a,b,cd ab,cd 2.把单词集合建立字典树 ...

  5. UVA - 1401 | LA 3942 - Remember the Word(dp+trie)

    https://vjudge.net/problem/UVA-1401 题意 给出S个不同的单词作为字典,还有一个长度最长为3e5的字符串.求有多少种方案可以把这个字符串分解为字典中的单词. 分析 首 ...

  6. UVa 1401 (Tire树) Remember the Word

    d(i)表示从i开始的后缀即S[i, L-1]的分解方法数,字符串为S[0, L-1] 则有d(i) = sum{ d(i+len(x)) | 单词x是S[i, L-1]的前缀 } 递推边界为d(L) ...

  7. uva 1401 dp+Trie

    http://uva.onlinejudge.org/index.php? option=com_onlinejudge&Itemid=8&page=show_problem& ...

  8. uva 1401

    Neal is very curious about combinatorial problems, and now here comes a problem about words. Knowing ...

  9. 1401 - Remember the Word

    注意到单词的长度最长100,其实最糟糕复杂度应该能到O(300005*100),需要注意的是在字典树上匹配单词时,一旦不匹配,则后面的就不会匹配,需要break出来(这个害我TLE查了半天,日!),还 ...

随机推荐

  1. 个人CTF资源聚合

    i春秋 幻泉 CTF入门课程笔记 视频地址 能力 思维能力 快速学习能力 技术能力 基础 编程基础 (c语言 汇编语言 脚本语言) 数学基础 (算法 密码学) 脑洞 (天马行空的想象推理) 体力耐力( ...

  2. Python的数据类型

    Python的主要数据类型有:Number(数字),String(字符串类型),布尔值,List(列表),Tuple(元组)和Dictionary(字典). 1.数字(Number) 数字包括整数和浮 ...

  3. 极路由2(极贰)在OpenWrt下定制自己的ss服务

    默认刷入的OpenWrt带的ss, 只有ss-redir服务, 但是在实际使用中, 很多时候还是希望访问直接通过正常网关, 只有少部分访问需要通过ss, 所以希望能配置成为ss-local服务. 在保 ...

  4. [LeetCode] Nested List Weight Sum II 嵌套链表权重和之二

    Given a nested list of integers, return the sum of all integers in the list weighted by their depth. ...

  5. [LeetCode] Shortest Word Distance 最短单词距离

    Given a list of words and two words word1 and word2, return the shortest distance between these two ...

  6. PHP的性能大坑--strtotime函数

    最近在做一个游戏数据统计后台,最基础的功能是通过分析注册登录日志来展示用户数据.在公司内部测试,用户量很少,所以就没有发现什么性能问题.但是这两天一起放到真实的测试环境,用户量噌噌地就涌进来了,从下午 ...

  7. ACM/ICPC2016 青岛区域赛

    A(hdu5982).(模拟) 题意:输入n对数,将每对数相乘并相加 分析:模拟 B(hdu5983).(模拟) 题意:给你一个二阶魔方,问能否通过一次旋转使得给定魔方的每个面颜色相同 分析:模拟 C ...

  8. eclipse直接访问数据库

    本文转载至百度经验 http://jingyan.baidu.com/article/a501d80cea3ed4ec630f5e2f.html 以oracle 11g 数据库为例

  9. Android Studio 常见异常解决办法

    Error:Failed to crunch file D:\Englis_installation_directory\AndroidStudio\AndroidWorkSpace\YoukAndr ...

  10. pyMysql

    本篇对于Python操作MySQL主要使用两种方式: 原生模块 pymsql ORM框架 SQLAchemy pymsql pymsql是Python中操作MySQL的模块,其使用方法和MySQLdb ...