Docker4之Stack
Make sure you have published the
friendlyhello
image you created by pushing it to a registry. We’ll use that shared image here.Be sure your image works as a deployed container. Run this command, slotting in your info for
username
,repo
, andtag
:docker run -p 80:80 username/repo:tag
, then visithttp://localhost/
.Have a copy of your
docker-compose.yml
from Part 3 handy.Make sure that the machines you set up in part 4 are running and ready. Run
docker-machine ls
to verify this. If the machines are stopped, rundocker-machine start myvm1
to boot the manager, followed bydocker-machine start myvm2
to boot the worker.- Have the swarm you created in part 4 running and ready. Run
docker-machine ssh myvm1 "docker node ls"
to verify this. If the swarm is up, both nodes will report aready
status. If not, reinitialze the swarm and join the worker as described in Set up your swarm.
learned how to set up a swarm, which is a cluster of machines running Docker, and deployed an application to it, with containers running in concert on multiple machines.
you’ll reach the top of the hierarchy of distributed applications: the stack.
A stack is a group of interrelated services that share dependencies, and can be orchestrated and scaled together.
A single stack is capable of defining and coordinating the functionality of an entire application (though very complex applications may want to use multiple stacks).
Some good news is, you have technically been working with stacks since part 3, when you created a Compose file and used docker stack deploy
.
But that was a single service stack running on a single host, which is not usually what takes place in production.
Here, you will take what you’ve learned, make multiple services relate to each other, and run them on multiple machines.
Add a new service and redeploy
It’s easy to add services to our docker-compose.yml
file.
First, let’s add a free visualizer service that lets us look at how our swarm is scheduling containers.
1.Open up docker-compose.yml
in an editor and replace its contents with the following. Be sure to replace username/repo:tag
with your image details.
version: "3"
services:
web:
# replace username/repo:tag with your name and image details
image: username/repo:tag
deploy:
replicas: 5
restart_policy:
condition: on-failure
resources:
limits:
cpus: "0.1"
memory: 50M
ports:
- "80:80"
networks:
- webnet
visualizer:
image: dockersamples/visualizer:stable
ports:
- "8080:8080"
volumes:
- "/var/run/docker.sock:/var/run/docker.sock"
deploy:
placement:
constraints: [node.role == manager]
networks:
- webnet
networks:
webnet:
The only thing new here is the peer service to web
, named visualizer
.
You’ll see two new things here: a volumes
key, giving the visualizer access to the host’s socket file for Docker, and a placement
key, ensuring that this service only ever runs on a swarm manager – never a worker. That’s because this container, built from an open source project created by Docker, displays Docker services running on a swarm in a diagram.
2.Make sure your shell is configured to talk to myvm1
(full examples are here).
Run
docker-machine ls
to list machines and make sure you are connected tomyvm1
, as indicated by an asterisk next it.If needed, re-run
docker-machine env myvm1
, then run the given command to configure the shell.On Mac or Linux the command is:
eval $(docker-machine env myvm1)
On Windows the command is:
& "C:\Program Files\Docker\Docker\Resources\bin\docker-machine.exe" env myvm1 | Invoke-Expression
3.Re-run the docker stack deploy
command on the manager, and whatever services need updating will be updated:
$ docker stack deploy -c docker-compose.yml getstartedlab
Updating service getstartedlab_web (id: angi1bf5e4to03qu9f93trnxm)
Creating service getstartedlab_visualizer (id: l9mnwkeq2jiononb5ihz9u7a4)
4.Take a look at the visualizer.
You saw in the Compose file that visualizer
runs on port 8080. Get the IP address of one of your nodes by running docker-machine ls
. Go to either IP address at port 8080 and you will see the visualizer running:
The single copy of visualizer
is running on the manager as you expect, and the 5 instances of web
are spread out across the swarm. You can corroborate this visualization by running docker stack ps <stack>
:
docker stack ps getstartedlab
The visualizer is a standalone service that can run in any app that includes it in the stack. It doesn’t depend on anything else.
Now let’s create a service that does have a dependency: the Redis service that will provide a visitor counter.
Persist the data
Let’s go through the same workflow once more to add a Redis database for storing app data.
1.Save this new docker-compose.yml
file, which finally adds a Redis service. Be sure to replace username/repo:tag
with your image details.
version: "3"
services:
web:
# replace username/repo:tag with your name and image details
image: username/repo:tag
deploy:
replicas: 5
restart_policy:
condition: on-failure
resources:
limits:
cpus: "0.1"
memory: 50M
ports:
- "80:80"
networks:
- webnet
visualizer:
image: dockersamples/visualizer:stable
ports:
- "8080:8080"
volumes:
- "/var/run/docker.sock:/var/run/docker.sock"
deploy:
placement:
constraints: [node.role == manager]
networks:
- webnet
redis:
image: redis
ports:
- "6379:6379"
volumes:
- /home/docker/data:/data
deploy:
placement:
constraints: [node.role == manager]
command: redis-server --appendonly yes
networks:
- webnet
networks:
webnet:
Redis has an official image in the Docker library and has been granted the short image
name of just redis
, so no username/repo
notation here.
The Redis port, 6379, has been pre-configured by Redis to be exposed from the container to the host, and here in our Compose file we expose it from the host to the world, so you can actually enter the IP for any of your nodes into Redis Desktop Manager and manage this Redis instance, if you so choose.
Most importantly, there are a couple of things in the redis
specification that make data persist between deployments of this stack:
redis
always runs on the manager, so it’s always using the same filesystem.redis
accesses an arbitrary directory in the host’s file system as/data
inside the container, which is where Redis stores data.
Together, this is creating a “source of truth” in your host’s physical filesystem for the Redis data.
Without this, Redis would store its data in /data
inside the container’s filesystem, which would get wiped out if that container were ever redeployed.
This source of truth has two components:
- The placement constraint you put on the Redis service, ensuring that it always uses the same host.
- The volume you created that lets the container access
./data
(on the host) as/data
(inside the Redis container). While containers come and go, the files stored on./data
on the specified host will persist, enabling continuity.
You are ready to deploy your new Redis-using stack.
2.Create a ./data
directory on the manager:
docker-machine ssh myvm1 "mkdir ./data"
3.Make sure your shell is configured to talk to myvm1
(full examples are here).
Run
docker-machine ls
to list machines and make sure you are connected tomyvm1
, as indicated by an asterisk next it.If needed, re-run
docker-machine env myvm1
, then run the given command to configure the shell.On Mac or Linux the command is:
eval $(docker-machine env myvm1)
On Windows the command is:
& "C:\Program Files\Docker\Docker\Resources\bin\docker-machine.exe" env myvm1 | Invoke-Expression
- Run
docker stack deploy
one more time.
$ docker stack deploy -c docker-compose.yml getstartedlab
- Run
docker service ls
to verify that the three services are running as expected.
$ docker service ls
ID NAME MODE REPLICAS IMAGE PORTS
x7uij6xb4foj getstartedlab_redis replicated 1/1 redis:latest *:6379->6379/tcp
n5rvhm52ykq7 getstartedlab_visualizer replicated 1/1 dockersamples/visualizer:stable *:8080->8080/tcp
mifd433bti1d getstartedlab_web replicated 5/5 orangesnap/getstarted:latest *:80->80/tcp
- Check the web page at one of your nodes (e.g.
http://192.168.99.101
) and you’ll see the results of the visitor counter, which is now live and storing information on Redis.
Also, check the visualizer at port 8080 on either node’s IP address, and you’ll see the redis
service running along with the web
and visualizer
services.
stacks are inter-related services all running in concert, and that – surprise! – you’ve been using stacks since part three of this tutorial. You learned that to add more services to your stack, you insert them in your Compose file. Finally, you learned that by using a combination of placement constraints and volumes you can create a permanent home for persisting data, so that your app’s data survives when the container is torn down and redeployed.
Docker4之Stack的更多相关文章
- 线性数据结构之栈——Stack
Linear data structures linear structures can be thought of as having two ends, whose items are order ...
- Java 堆内存与栈内存异同(Java Heap Memory vs Stack Memory Difference)
--reference Java Heap Memory vs Stack Memory Difference 在数据结构中,堆和栈可以说是两种最基础的数据结构,而Java中的栈内存空间和堆内存空间有 ...
- [数据结构]——链表(list)、队列(queue)和栈(stack)
在前面几篇博文中曾经提到链表(list).队列(queue)和(stack),为了更加系统化,这里统一介绍着三种数据结构及相应实现. 1)链表 首先回想一下基本的数据类型,当需要存储多个相同类型的数据 ...
- Stack Overflow 排错翻译 - Closing AlertDialog.Builder in Android -Android环境中关闭AlertDialog.Builder
Stack Overflow 排错翻译 - Closing AlertDialog.Builder in Android -Android环境中关闭AlertDialog.Builder 转自:ht ...
- Uncaught RangeError: Maximum call stack size exceeded 调试日记
异常处理汇总-前端系列 http://www.cnblogs.com/dunitian/p/4523015.html 开发道路上不是解决问题最重要,而是解决问题的过程,这个过程我们称之为~~~调试 记 ...
- Stack操作,栈的操作。
栈是先进后出,后进先出的操作. 有点类似浏览器返回上一页的操作, public class Stack<E>extends Vector<E> 是vector的子类. 常用方法 ...
- [LeetCode] Implement Stack using Queues 用队列来实现栈
Implement the following operations of a stack using queues. push(x) -- Push element x onto stack. po ...
- [LeetCode] Min Stack 最小栈
Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. pu ...
- Stack的三种含义
作者: 阮一峰 日期: 2013年11月29日 学习编程的时候,经常会看到stack这个词,它的中文名字叫做"栈". 理解这个概念,对于理解程序的运行至关重要.容易混淆的是,这个词 ...
随机推荐
- arm cortex-m0plus源码学习(三)GPIO
概述: Cortex-m0的integration_kit提供三个GPIO接口,其中GPIO0传输到外部供用户使用,为EXTGPIO:GPIO1是内核自己的信号,不能乱改,会崩掉:GPIO2是一些中断 ...
- VIM For Windows 1
some tips for using vim in windows. 1,download the software vim and install it, you can go to the Of ...
- nextjs 服务端渲染请求参数
Post.getInitialProps = async function (context) { const { id } = context.query const res = await fet ...
- bzoj1180 tree
题目链接 link cut tree 模板题 link cut tree不都是模板题嘛?(雾 #include<algorithm> #include<iostream> #i ...
- How to use CAR FANS C800 Diagnostic Scan Tool to do diagnosis operation
How to use Heavy Duty Diagnostic CAR FANS C800 Diagnostic Scan Tool to do diagnosis operation Here i ...
- Python+OpenCV图像处理(六)—— ROI与泛洪填充
一.ROI ROI(region of interest),感兴趣区域.机器视觉.图像处理中,从被处理的图像以方框.圆.椭圆.不规则多边形等方式勾勒出需要处理的区域,称为感兴趣区域,ROI. 代码如下 ...
- python之字符串函数
1. endswith() startswith() # 以什么什么结尾 # 以什么什么开始 test = "alex" v = test.endswith('ex') v = ...
- Eloquent JavaScript #09# Regular Expressions
索引 Notes js创建正则表达式的两种方式 js正则匹配方式(1) 字符集合 重复匹配 分组(子表达式) js正则匹配方式(2) The Date class 匹配整个字符串 Choice pat ...
- Prometheus监控学习笔记之Prometheus普罗米修斯监控入门
0x00 概述 视频讲解通过链接网易云课堂·IT技术快速入门学院进入,更多关于Prometheus的文章. Prometheus是最近几年开始流行的一个新兴监控告警工具,特别是kubernetes的流 ...
- Linux-eval
shell中eval的用法示例: 语 法:eval [参数] 功能说明:eval会对后面的[参数]进行两遍扫描,如果在第一遍扫面后cmdLine是一个普通命令,则执行此命令:如果cmdLine中含有变 ...