HIHOcoder 1457 后缀自动机四·重复旋律7
思路
后缀自动机题目,题目本质上是要求求出所有不同的子串的和,SAM每个节点中存放的子串互不相同,所以对于每个节点的sum,可以发现是可以递推的,每个点对子节点贡献是sum[x]*10+c*sz[x],对于单个串,sz[x]就是maxlen[x]-minlen[x]+1,现在有多个串,可以用其他字符分割,然后建出SAM,注意到新的合法的sz是不能跨越两个不同的串的,SAM上的一条路径就是一个子串,所以求sz等价于统计不经过分隔符的路径条数,拓扑排序即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <string>
#include <queue>
#include <iostream>
#define int long long
using namespace std;
const int MAXN = 1000100*2;
const int MOD = 1000000007;
int cnt,trans[MAXN][11],maxlen[MAXN],sz[MAXN],in[MAXN],suflink[MAXN],sum[MAXN],ok[MAXN],n,len=0;
char s[MAXN],t[MAXN];
int new_state(int _maxlen,int *_trans,int _suflink){
++cnt;
maxlen[cnt]=_maxlen;
if(_trans)
for(int i=0;i<11;i++)
trans[cnt][i]=_trans[i];
suflink[cnt]=_suflink;
return cnt;
}
int add_len(int u,int c){
int z=new_state(maxlen[u]+1,NULL,0);
if(c==10)
ok[z]=true;
while(u&&(!trans[u][c])){
trans[u][c]=z;
u=suflink[u];
}
if(!u){
suflink[z]=1;
return z;
}
int v=trans[u][c];
if(maxlen[v]==maxlen[u]+1){
suflink[z]=v;
return z;
}
int y=new_state(maxlen[u]+1,trans[v],suflink[v]);
suflink[z]=suflink[v]=y;
while(u&&trans[u][c]==v){
trans[u][c]=y;
u=suflink[u];
}
return z;
}
queue<int> q;
signed main(){
scanf("%lld",&n);
for(int i=1;i<=n;i++){
scanf("%s",t+1);
int midlen=strlen(t+1);
if(i!=1)
s[++len]='0'+10;
for(int j=1;j<=midlen;j++)
s[len+j]=t[j];
len+=midlen;
}
s[len+1]='\0';
// printf("%s\n%lld\n",s+1,len);
int pre=1;
cnt=1;
for(int i=1;i<=len;i++)
pre=add_len(pre,s[i]-'0');
// printf("cnt=%d\n",cnt);
for(int i=1;i<=cnt;i++){
for(int j=0;j<11;j++)
if(trans[i][j])
in[trans[i][j]]++;
}
for(int i=1;i<=cnt;i++)
if(!in[i])
q.push(i);
sz[1]=1;
sum[1]=0;
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=0;i<11;i++){
if(trans[x][i]){
if(i<10){
sz[trans[x][i]]=(sz[x]+sz[trans[x][i]])%MOD;
sum[trans[x][i]]=(sum[trans[x][i]]+sum[x]*10%MOD+i*sz[x]%MOD)%MOD;
}
in[trans[x][i]]--;
if(!in[trans[x][i]])
q.push(trans[x][i]);
}
}
}
int ans=0;
for(int i=1;i<=cnt;i++)
if(!ok[i])
ans=(ans+sum[i])%MOD;
printf("%lld\n",ans);
return 0;
}
HIHOcoder 1457 后缀自动机四·重复旋律7的更多相关文章
- hihocoder 1457 后缀自动机四·重复旋律7 求不同子串的和
描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一段音乐旋律可以被表示为一段数构成的数列. 神奇的是小Hi发现了一部名字叫<十进制进行曲大全>的作品集,顾名思义,这部作品集里有许多作品 ...
- hihocoder 1457 后缀自动机四·重复旋律7 ( 多串连接处理技巧 )
题目链接 分析 : 这道题对于单个串的用 SAM 然后想想怎么维护就行了 但是多个串下.可以先将所有的串用一个不在字符集( 这道题的字符集是 '0' ~ '9' ) 链接起来.建立后缀自动机之后 在统 ...
- hihoCoder #1457 : 后缀自动机四·重复旋律7(后缀自动机 + 拓扑排序)
http://hihocoder.com/problemset/problem/1457 val[i] 表示状态i所表示的所有字符串的十进制之和 ans= ∑ val[i]在后缀自动机上,从起始状态走 ...
- hihoCoder.1457.后缀自动机四 重复旋律7(广义后缀自动机)
题目链接 假设我们知道一个节点表示的子串的和sum,表示的串的个数cnt,那么它会给向数字x转移的节点p贡献 \(sum\times 10+c\times cnt\) 的和. 建广义SAM,按拓扑序正 ...
- HDU_1457_后缀自动机四·重复旋律7
#1457 : 后缀自动机四·重复旋律7 时间限制:15000ms 单点时限:3000ms 内存限制:512MB 描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一段音乐旋律可以被表示为一段数构成 ...
- BZOJ 后缀自动机四·重复旋律7
后缀自动机四·重复旋律7 时间限制:15000ms 单点时限:3000ms 内存限制:512MB 描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一段音乐旋律可以被表示为一段数构成的数列. 神奇的 ...
- hihocoder #1419 : 后缀数组四·重复旋律4
#1419 : 后缀数组四·重复旋律4 时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一个音乐旋律被表示为长度为 N 的数构 ...
- hihoCoder #1445 : 后缀自动机二·重复旋律5
#1445 : 后缀自动机二·重复旋律5 时间限制:10000ms 单点时限:2000ms 内存限制:256MB 描述 小Hi平时的一大兴趣爱好就是演奏钢琴.我们知道一个音乐旋律被表示为一段数构成的数 ...
- hihoCoder #1465 : 后缀自动机五·重复旋律8
http://hihocoder.com/problemset/problem/1465 求S的循环同构串在T中的出现次数 将串S变成SS 枚举SS的每个位置i,求出以i结尾的SS的子串 与 T的最长 ...
随机推荐
- Robot Framework 遇到过的错误 1. Chrome打开无法数据网址,地址栏只显示data:,
问题描述:用RF打开网页时未跳转到指定网址,而是显示data:, *** Settings ***Library SeleniumLibrary *** Test Cases ***Login_Tes ...
- [openjudge-搜索]Knight Moves(翻译与题解)
题目描述(翻译) somurolov先生,精彩的象棋玩家.声称任何人他都可以从一个位置到另一个骑士这么快.你能打败他吗? 问题 你的任务是写一个程序来计算一个骑士达到从另一点所需要的最少步数,这样你就 ...
- sql 表中删除字段重复的行
Id Email UserName1 Taiseer.Joudeh@hotmail.com TaiseerJoudeh2 Hasan.Ahmad@mymail.com ...
- centos中yum命令删除还原的补救方法介绍
前言 yum,是Yellow dog Updater Modified的简称,起初是由yellow dog这一发行版的开发者Terra Soft研发,用python写成,那时还叫做yup(yellow ...
- 【安装虚拟机三】设置Linux IP地址
环境 VMware 10 CentOS-6.5-x86_64 第一步:查看IP信息linux:ifconfig (windows:ipconfig) 第二步:编辑网卡信息 vi /etc/syscon ...
- linux常用命令:mkdir 命令
linux mkdir 命令用来创建指定的名称的目录,要求创建目录的用户在当前目录中具有写权限,并且指定的目录名不能是当前目录中已有的目录. 1.命令格式: mkdir [选项] 目录... 2.命令 ...
- H.264流媒体协议格式中的Annex B格式和AVCC格式深度解析
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/Romantic_Energy/article/details/50508332本文需要读者对H.26 ...
- Qt QTextEdit根据行号移动光标
QTextEdit* p = new QTextEdit; QTextBlock block = p->document()->findBlockByNumber(nLineNum); p ...
- Inception 模型
https://blog.csdn.net/xxiaozr/article/details/71481356 inception v1: 去除了最后的全连接层,使用全局平均池化层来代替,因为全连接层的 ...
- ELK学习笔记之Grok patterns正则匹配
https://github.com/logstash-plugins/logstash-patterns-core/blob/master/patterns/grok-patterns USERNA ...