Codeforces 514E Darth Vader and Tree 矩阵快速幂
感觉是个很裸的矩阵快速幂, 搞个100 × 100 的矩阵, 直接转移就好啦。
#include<bits/stdc++.h>
#define LL long long
#define fi first
#define se second
#define mk make_pair
#define PLL pair<LL, LL>
#define PLI pair<LL, int>
#define PII pair<int, int>
#define SZ(x) ((int)x.size())
#define ull unsigned long long using namespace std; const int N = 1e5 + ;
const int inf = 0x3f3f3f3f;
const LL INF = 0x3f3f3f3f3f3f3f3f;
const int mod = 1e9 + ;
const double eps = 1e-;
const double PI = acos(-); int n, x, c[]; struct Matrix {
int a[][];
Matrix() {
memset(a, , sizeof(a));
}
void init() {
for(int i = ; i < ; i++)
a[i][i] = ;
}
Matrix operator * (const Matrix &B) const {
Matrix C;
for(int i = ; i < ; i++)
for(int j = ; j < ; j++)
for(int k = ; k < ; k++)
C.a[i][j] = (C.a[i][j] + 1ll * a[i][k] * B.a[k][j]) % mod;
return C;
}
Matrix operator ^ (int b) {
Matrix C; C.init();
Matrix A = (*this);
while(b) {
if(b & ) C = C * A;
A = A * A; b >>= ;
}
return C;
}
} M; int main() {
scanf("%d%d", &n, &x);
for(int i = ; i <= n; i++) {
int v; scanf("%d", &v);
c[v]++;
}
for(int j = ; j < ; j++) M.a[][j] = c[j + ]; M.a[][] = ;
for(int i = ; i < ; i++) M.a[i][i - ] = ; M.a[][] = ;
Matrix mat = M ^ (x);
printf("%d\n", (mat.a[][] + mat.a[][]) % mod);
return ;
} /*
*/
Codeforces 514E Darth Vader and Tree 矩阵快速幂的更多相关文章
- Codeforces Round #536 (Div. 2) F 矩阵快速幂 + bsgs(新坑) + exgcd(新坑) + 欧拉降幂
https://codeforces.com/contest/1106/problem/F 题意 数列公式为\(f_i=(f^{b_1}_{i-1}*f^{b_2}_{i-2}*...*f^{b_k} ...
- Codeforces 576D Flights for Regular Customers 矩阵快速幂+DP
题意: 给一个$n$点$m$边的连通图 每个边有一个权值$d$ 当且仅当当前走过的步数$\ge d$时 才可以走这条边 问从节点$1$到节点$n$的最短路 好神的一道题 直接写做法喽 首先我们对边按$ ...
- CodeForces 450B Jzzhu and Sequences(矩阵快速幂)题解
思路: 之前那篇完全没想清楚,给删了,下午一上班突然想明白了. 讲一下这道题的大概思路,应该就明白矩阵快速幂是怎么回事了. 我们首先可以推导出 学过矩阵的都应该看得懂,我们把它简写成T*A(n-1)= ...
- codeforces 450B B. Jzzhu and Sequences(矩阵快速幂)
题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input ...
- Product Oriented Recurrence(Codeforces Round #566 (Div. 2)E+矩阵快速幂+欧拉降幂)
传送门 题目 \[ \begin{aligned} &f_n=c^{2*n-6}f_{n-1}f_{n-2}f_{n-3}&\\ \end{aligned} \] 思路 我们通过迭代发 ...
- Codeforces 696D Legen...(AC自动机 + 矩阵快速幂)
题目大概说给几个字符串,每个字符串都有一个开心值,一个串如果包含一次这些字符串就加上对应的开心值,问长度n的串开心值最多可以是多少. POJ2778..复习下..太弱了都快不会做了.. 这个矩阵的乘法 ...
- Codeforces 551D GukiZ and Binary Operations(矩阵快速幂)
Problem D. GukiZ and Binary Operations Solution 一位一位考虑,就是求一个二进制序列有连续的1的种类数和没有连续的1的种类数. 没有连续的1的二进制序列的 ...
- Codeforces 392C Yet Another Number Sequence (矩阵快速幂+二项式展开)
题意:已知斐波那契数列fib(i) , 给你n 和 k , 求∑fib(i)*ik (1<=i<=n) 思路:不得不说,这道题很有意思,首先我们根据以往得出的一个经验,当我们遇到 X^k ...
- Codeforces 989E A Trance of Nightfall 矩阵快速幂+DP
题意:二维平面上右一点集$S$,共$n$个元素,开始位于平面上任意点$P$,$P$不一定属于$S$,每次操作为选一条至少包含$S$中两个元素和当前位置$P$的直线,每条直线选取概率相同,同一直线上每个 ...
随机推荐
- Python基础(正则、序列化、常用模块和面向对象)-day06
写在前面 上课第六天,打卡: 天地不仁,以万物为刍狗: 一.正则 - 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法: - 在线正则工具:http://tool ...
- Python基础-day03
写在前面 上课第三天,打卡: 不要让干净的灵魂染上尘埃,永远年轻.永远热泪盈眶 一.再谈编码 - 文件的概念 '文件' 是一个抽象的概念,是操作系统提供的外部存储设备的抽象,对应底层的硬盘:它是程序 ...
- Java面试题系列(三)Java new一个对象的过程中发生了什么
Person class Person{ private String name; private int age; public Person() { super(); } public Perso ...
- C# PointToScreen
子窗体定位时,如果主窗口不在左上角,需要根据主窗口的坐标,相减才行. Point p1 = Label.PointToScreen(new Point(0, 0)); p1.X -= this.X; ...
- saltstack系列~第二篇
一 简介:今天咱们来继续学习saltstack 二 命名和分组 1 命名规则 1 ID构成 机房-DB类型-角色(主/从)-IP地址 2 分组构成 分为master slave两组即可 2 分组规则 ...
- ROS学习笔记(二) # ROS NodeHandles
1. 自动启动和关闭 ros::NodeHandle nh: 这段代码执行之后,如果内部节点还没有启动,ros::NodeHandle 会启动这个节点:一旦所有的 ros::NodeHandle 实例 ...
- 【转】Python数据类型之“序列概述与基本序列类型(Basic Sequences)”
[转]Python数据类型之“序列概述与基本序列类型(Basic Sequences)” 序列是指有序的队列,重点在"有序". 一.Python中序列的分类 Python中的序列主 ...
- Pytorch之可视化
先解决下keras可视化安装graphviz的问题: 注意安装顺序: sudo pip3 install graphviz # python包 sudo apt-get install graphvi ...
- ARMV8 datasheet学习笔记4:AArch64系统级体系结构之存储模型
1.前言 关于存储系统体系架构,可以概述如下: 存储系统体系结构的形式 VMSA 存储属性 2. 存储系统体系结构 2.1. 地址空间 指令地址空间溢出 指令地址计算((address_of ...
- ubuntu下好用的音乐播放器audacious
audacious是ubuntu下一款非常好用的音乐播放器,万能的音乐播放器而且简洁美观,可以播放ape各种无损发烧音乐格式. 如果想听音乐的话,现在百度音乐,酷我音乐,酷狗音乐等都是有网络播放器的, ...