题目链接

\(Description\)

给定一棵树,点有点权。\(Q\)次询问\(x,y,z\),求\(x\)到\(y\)的简单路径中,与\(z\)异或能得到的最大的数是多少。

\(Solution\)

对于给定数集的询问,我们可以建Trie树,从高位到低位贪心地走(能走优的就走)。

同树上的主席树一样,利用父节点的根节点建树,就是可持久化Trie。

令\(w=LCA(u,v)\)。因为只是xor一个数,所以用\(u,v,w\)三个点的根节点就可以了,最后再判断一下\(w\)是否可能更优(不需要\(fa[w]\))。

在\(u,v,w\)三棵Trie上走,若\(sz[u]+sz[v]-2*sz[w]>0\)则能走。

区间询问同理也可以做。

//1201MS	30704K
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define BIT 15
const int N=1e5+5; int Enum,H[N],nxt[N<<1],to[N<<1],A[N],root[N],fa[N],dep[N],sz[N],son[N],top[N];
struct Trie
{
#define S N*20//N*18为什么不够啊
int tot,sz[S],son[S][2]; inline int New_Node()
{
++tot, sz[tot]=0, son[tot][0]=son[tot][1]=0;
return tot;
}
void Insert(int x,int y,int v)
{
for(int i=BIT; ~i; --i)
{
int c=v>>i&1;
son[x][c]=New_Node(), son[x][c^1]=son[y][c^1];
x=son[x][c], y=son[y][c];
sz[x]=sz[y]+1;//上面根节点的sz不需要加
}
}
int Query(int x,int y,int w,int v)
{
int res=0,tmp=A[w]^v;
w=root[w];
for(int i=BIT; ~i; --i)
{
int c=(v>>i&1)^1;
if(sz[son[x][c]]+sz[son[y][c]]-2*sz[son[w][c]]>0)
x=son[x][c], y=son[y][c], w=son[w][c], res|=1<<i;
else
c^=1, x=son[x][c], y=son[y][c], w=son[w][c];
}
return std::max(res,tmp);
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum;
}
inline int LCA(int u,int v)
{
while(top[u]!=top[v]) dep[top[u]]>dep[top[v]]?u=fa[top[u]]:v=fa[top[v]];
return dep[u]<dep[v]?u:v;
}
void DFS1(int x)
{
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x])
{
fa[v]=x, dep[v]=dep[x]+1, DFS1(v), sz[x]+=sz[v];
if(sz[v]>mx) mx=sz[v], son[x]=v;
}
}
void DFS2(int x,int tp)
{
top[x]=tp;
T.Insert(root[x]=T.New_Node()/**/,root[fa[x]],A[x]);
if(son[x])
{
DFS2(son[x],tp);
for(int i=H[x],v; i; i=nxt[i])
if((v=to[i])!=fa[x] && v!=son[x]) DFS2(v,v);
}
} int main()
{
int n;
while(~scanf("%d",&n))
{
T.tot=Enum=0, memset(H,0,sizeof H);
memset(son,0,sizeof son);//!
// memset(root,0,sizeof root); int Q=read();
for(int i=1; i<=n; ++i) A[i]=read();
for(int i=1; i<n; ++i) AE(read(),read());
DFS1(1), DFS2(1,1);
for(int u,v; Q--; ) u=read(),v=read(),printf("%d\n",T.Query(root[u],root[v],LCA(u,v),read()));
}
return 0;
}

HDU.4757.Tree(可持久化Trie)的更多相关文章

  1. HDU 4757 Tree 可持久化字典树 trie

    http://acm.hdu.edu.cn/showproblem.php?pid=4757 给出一棵树,每个节点有权值,每次查询节点 (u,v) 以及 val,问 u 到 v 路径上的某个节点与 v ...

  2. HDU 4757 Tree 可持久化字典树

    Tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=4757 Des ...

  3. HDU 4757 Tree(可持久化Trie+Tarjan离线LCA)

    Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Total Su ...

  4. HDU 4757 Tree(可持久化trie)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4757 题意:给出一棵树,节点有权值.每次询问x到y的路径上与z抑或的最大值. 思路:可持久化trie. ...

  5. HDU 4757 Tree

    传送门 Tree Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others) Prob ...

  6. HDU 4757 Tree(可持久化字典树)(2013 ACM/ICPC Asia Regional Nanjing Online)

    Problem Description   Zero and One are good friends who always have fun with each other. This time, ...

  7. HDU4757 Tree(可持久化Trie)

    写过可持久化线段树,但是从来没写过可持久化的Trie,今天补一补. 题目就是典型的给你一个数x,和一个数集,问x和里面的某个数xor起来的最大值是多少. 最原始的是数集是固定的,只需要对数集按照高到低 ...

  8. HDU 4757 Tree(可持续化字典树,lca)

    题意:询问树上结点x到结点y路上上的权值异或z的最大值. 任意结点权值 ≤ 2^16,可以想到用字典树. 但是因为是询问某条路径上的字典树,将字典树可持续化,字典树上的结点保存在这条路径上的二进制数. ...

  9. 可持久化Trie模板

    如果你了解过 01 Trie 和 可持久化线段树(例如 : 主席树 ).那么就比较好去可持久化 Trie 可持久化 Trie 当 01 Trie 用的时候能很方便解决一些原本 01 Trie 不能解决 ...

随机推荐

  1. MongoDB的增删查改基本操作

    MongoDB的增删查改基本操作 先决条件建库.建集合.建文档 连接mongo,如果连接不上什么连接拒绝,输入mongod命令,启动服务后 输入mongo show dbs 显示当前的所有的数据库 一 ...

  2. Laravel 中设置 Carbon 的 diffForHumans 方法返回中文

    在写 feed 流功能时,经常要用到 Carbon 的 diffForHumans 方法,以方便返回直观的时间描述. 例如 Carbon::parse($date)->diffForHumans ...

  3. GuzzleHttp 请求设置超时时间

    之前调用一个三方的 WEB API,大量的请求超时,导致 PHP 进程被占用完.整个网站一直报 504. 其中一个优化措施就是对三方 API 调用设置超时时间. use GuzzleHttp\Clie ...

  4. PHP获取数组最后一个元素的键和值

    <?php /** * PHP获取数组中最后一个元素下标和值 */ $arr = ['1' => 'name', '3' => 2, 5 => 6, 'name' => ...

  5. springMVC源码分析--FlashMap和FlashMapManager重定向数据保存

    在上一篇博客springMVC源码分析--页面跳转RedirectView(三)中我们看到了在RedirectView跳转时会将跳转之前的请求中的参数保存到fFlashMap中,然后通过FlashMa ...

  6. python 全栈开发,Day66(web应用,http协议简介,web框架)

    一.web应用 web应用程序是一种可以通过Web访问的应用程序,程序的最大好处是用户很容易访问应用程序,用户只需要有浏览器即可,不需要再安装其他软件.应用程序有两种模式C/S.B/S.C/S是客户端 ...

  7. HDFS上创建文件、写入内容

    1.创建文件 hdfs dfs -touchz /aaa/aa.txt 2.写入内容 echo "<Text to append>" | hdfs dfs -appen ...

  8. 一.hadoop入门须知

    目录: 1.hadoop入门须知 2.hadoop环境搭建 3.hadoop mapreduce之WordCount例子 4.idea本地调试hadoop程序 5.hadoop 从mysql中读取数据 ...

  9. Java多线程系列目录

    java多线程学习: 传送门:Java多线程系列目录(共43篇)

  10. Ubuntu 里面 apt-get 三个有关更新的命令的区别

    apt-get update 更新软件源中的所有软件列表. apt-get upgrade 更新软件. apt-get dist-upgrade 更新系统版本. 作者:耑新新,发布于  博客园 转载请 ...