BZOJ.3693.圆桌会议(Hall定理 线段树)
先考虑链。题目相当于求是否存在完备匹配。那么由Hall定理,对于任意一个区间[L,R],都要满足[li,ri]完全在[L,R]中的ai之和sum小于等于总位置数,即R-L+1。(其实用不到Hall定理,显然)
为什么不是子集呢,因为区间并和子集等价,所有区间并都是要验证的。
而且可以发现,只有当R为某个r[i],L为某个l[j]时,[L,R]才有必要验证。
所以我们将区间按r[]排序,枚举每个r[i]作为R。限制条件为\(sum<=R-L+1\)即\(sum+L-1<=R\),对于前面所有位置,即\(L∈[1,R]\),我们可以直接用线段树维护每个位置的sum+L-1,查询最大值就可以了。
每次枚举到i,会使\(L∈[1,l[i]]\)时+ai,这个区间加就行了。
至于环,拆环为链就可以了。
但是有个问题,比如m=5,([1,3],2),([3,2],3),会分成区间[1,3],[3,7],[6,8],[3,2]实际是包含[1,3]的,但是[1,3]被分成了[3,3]和[6,7],它的a就不会就加上了。
因为r=l-1时,长为m,会把另一个[l,r]与复制出来的[l+m,r+m]分割开,导致都不包含在[r,l-1]内。
因为这些区间长度都为m,所以只需要先判一下整个区间即可。
r[]不需要离散化,否则注意是与ref[r]比较。。
不难 又浪费很长时间。。
//10496kb 888ms(Rank1!)
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 300000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
const int N=2e5+5;
int n,m,ref[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Opt
{
int l,r,a;
Opt() {}
Opt(int l,int r,int a):l(l),r(r),a(a) {}
bool operator <(const Opt &x)const{
return r<x.r;
}
}q[N];
struct Segment_Tree
{
#define lson rt<<1
#define rson rt<<1|1
#define ToL l,m,rt<<1
#define ToR m+1,r,rt<<1|1
int mx[N<<2],tag[N<<2];
#define Update(rt) mx[rt]=std::max(mx[lson],mx[rson])
// #define Add(rt,v) mx[rt]+=v, tag[rt]+=v
// #define PushDown(rt) Add(lson,tag[rt]), Add(rson,tag[rt]), tag[rt]=0
inline void Add(int rt,int v){
mx[rt]+=v, tag[rt]+=v;
}
void PushDown(int rt){
Add(lson,tag[rt]), Add(rson,tag[rt]), tag[rt]=0;
}
void Build(int l,int r,int rt)
{
tag[rt]=0;
if(l==r) mx[rt]=ref[l]-1;//ref!
else Build(l,l+r>>1,lson), Build((l+r>>1)+1,r,rson), Update(rt);
}
void Modify(int l,int r,int rt,int L,int R,int v)
{
if(L<=l && r<=R) {Add(rt,v); return;}
if(tag[rt]) PushDown(rt);
int m=l+r>>1;
if(L<=m) Modify(ToL,L,R,v);
if(m<R) Modify(ToR,L,R,v);
Update(rt);
}
int Query(int l,int r,int rt,int L,int R)
{
if(L<=l && r<=R) return mx[rt];
if(tag[rt]) PushDown(rt);
int m=l+r>>1;
if(L<=m)
if(m<R) return std::max(Query(ToL,L,R),Query(ToR,L,R));
else return Query(ToL,L,R);
return Query(ToR,L,R);
}
}T;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline int Find(int x,int r)
{
int l=1,mid;
while(l<r)
if(ref[mid=l+r>>1]<x) l=mid+1;
else r=mid;
return l;
}
int main()
{
int Case=read();
while(Case--)
{
n=read(),m=read(); int Q=0,t=0; long long sum=0;
for(int i=1,l,r,a; i<=n; ++i)
{
ref[++t]=l=read(),r=read(),sum+=(a=read());
if(l<=r) q[++Q]=Opt(l,r,a), q[++Q]=Opt(l+m,r+m,a), ref[++t]=l+m/*!*/;
else q[++Q]=Opt(l,r+m,a);
}
if(sum>m) {puts("No"); continue;}
std::sort(q+1,q+1+Q);
std::sort(ref+1,ref+1+t); int cnt=1;
for(int i=2; i<=t; ++i) if(ref[i]!=ref[i-1]) ref[++cnt]=ref[i];
for(int i=1; i<=Q; ++i) q[i].l=Find(q[i].l,cnt);//, q[i].r=Find(q[i].r,cnt);
n=cnt, T.Build(1,n,1);
bool f=1;
for(int i=1; i<=Q; ++i)
{
T.Modify(1,n,1,1,q[i].l,q[i].a);
if(T.Query(1,n,1,1,q[i].l/*l对?用r还得离散化...*/)>q[i].r) {f=0; break;}//ref[r]
}
puts(f?"Yes":"No");
}
return 0;
}
BZOJ.3693.圆桌会议(Hall定理 线段树)的更多相关文章
- BZOJ3693: 圆桌会议(Hall定理 线段树)
题意 题目链接 Sol 好的又是神仙题... 我的思路:对于区间分两种情况讨论,一种是完全包含,另一种是部分包含.第一种情况非常好判断,至于计算对于一个区间[l, r]的$\sum a[i]$就可以了 ...
- LOJ.6062.[2017山东一轮集训]Pair(Hall定理 线段树)
题目链接 首先Bi之间的大小关系没用,先对它排序,假设从小到大排 那么每个Ai所能匹配的Bi就是一个B[]的后缀 把一个B[]后缀的匹配看做一条边的覆盖,设Xi为Bi被覆盖的次数 容易想到 对于每个i ...
- loj#6062. 「2017 山东一轮集训 Day2」Pair hall定理+线段树
题意:给出一个长度为 n的数列 a和一个长度为 m 的数列 b,求 a有多少个长度为 m的连续子数列能与 b匹配.两个数列可以匹配,当且仅当存在一种方案,使两个数列中的数可以两两配对,两个数可以配对当 ...
- 模拟赛 怨灵退治 题解(Hall定理+线段树)
题意: 有 n 群怨灵排成一排,燐每秒钟会选择一段区间,消灭至多 k 只怨灵. 如果怨灵数量不足 k,则会消灭尽量多的怨灵. 燐作为一只有特点的猫,它选择的区间是不会相互包含的.它想要知道它每秒最多能 ...
- Codeforces 338E - Optimize!(Hall 定理+线段树)
题面传送门 首先 \(b_i\) 的顺序肯定不会影响匹配,故我们可以直接将 \(b\) 数组从小到大排个序. 我们考虑分析一下什么样的长度为 \(m\) 的数组 \(a_1,a_2,\dots,a_m ...
- [BZOJ3693]圆桌会议[霍尔定理+线段树]
题意 题目链接 分析 又是一个二分图匹配的问题,考虑霍尔定理. 根据套路我们知道只需要检查 "区间的并是一段连续的区间" 这些子集. 首先将环倍长.考虑枚举答案的区间并的右端点 \ ...
- 【BZOJ2138】stone Hall定理+线段树
[BZOJ2138]stone Description 话说Nan在海边等人,预计还要等上M分钟.为了打发时间,他玩起了石子.Nan搬来了N堆石子,编号为1到N,每堆包含Ai颗石子.每1分钟,Nan会 ...
- BZOJ1135 LYZ(POI2009) Hall定理+线段树
做这个题之前首先要了解判定二分图有没有完备匹配的Hall定理: 那么根据Hell定理,如果任何一个X子集都能连大于等于|S|的Y子集就可以获得完备匹配,那么就是: 题目变成只要不满足上面这个条件就能得 ...
- ARC076 F Exhausted? Hall定理 + 线段树扫描线
---题面--- 题目大意: 有n个人,m个座位,每个人可以匹配的座位是[1, li] || [ri, m],可能有人不需要匹配座位(默认满足),问最少有多少人不能被满足. 题解: 首先可以看出这是一 ...
随机推荐
- k-means 图像分割
经典的无监督聚类算法,不多说,上代码. import numpy as np import pandas as pd import copy import matplotlib.pyplot as p ...
- STM32F103X datasheet学习笔记---DMA
1.前言 直接存储器存取(DMA)用来提供在外设和存储器之间或者存储器和存储器之间的高速数据传输. 无须CPU干预,数据可以通过DMA快速地移动,这就节省了CPU的资源来做其他操作. 两个DMA控制器 ...
- echo -e 参数
-e 若字符串中出现以下字符,则特别加以处理,而不会将它当成一般文字输出: \a 发出警告声: \b 删除前一个字符: \c 最后不加上换行符号: \f 换行但光标仍旧停留在原 ...
- hping网络安全工具的安装及使用
hping是用于生成和解析TCPIP协议数据包的开源工具.创作者是Salvatore Sanfilippo.目前最新版是hping3,支持使用tcl脚本自动化地调用其API.hping是安全审计.防火 ...
- web.xml 部署描述符元素
在每一个Web应用程序路径的WEB-INF/下和conf/下存在一个Web.xml配置文件,用来设定Web应用程序的配置.在Web.xml中的设定非常多,接下来分段来说明它的各项设定:<?xml ...
- Ex 6_17 数量无限的硬币兑换问题_第七次作业
子问题定义:定义一个数组b,大小比兑换价格的大小多一个元素,其中b[i]表示是否能用面值为x1,x2,x3,..,xn的硬币兑换价格i. 递归关系: 初值设定:设b[0]=true 求解顺序:按下标从 ...
- Android ImageView 的scaleType 属性图解
ImageView 是 Android 中最常用的控件之一,而在使用ImageView时,必不可少的会使用到它的scaleType属性.该属性指定了你想让ImageView如何显示图片,包括是否进行缩 ...
- asp.net core 2.0 api ajax跨域问题
API配置: services.AddCors(options => { options.AddPolicy("any", builder => { builder.W ...
- oracle进阶之connect by笔记
本博客是自己在学习和工作途中的积累与总结,仅供自己参考,也欢迎大家转载,转载时请注明出处. http://www.cnblogs.com/king-xg/p/6794562.html 如果觉得对您有帮 ...
- Java 程序员必须收藏的资源大全
Java 程序员必须收藏的资源大全 Java(27) 古董级工具 这些工具伴随着Java一起出现,在各自辉煌之后还在一直使用. Apache Ant:基于XML的构建管理工具.官网 cglib:字节码 ...