Codeforces.741D.Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree 思路)
\(Description\)
给定一棵树,每条边上有一个字符(a~v)。对每个节点,求它的子树中一条最长的路径,满足 路径上所有边上的字符可以重新排列成一个回文串。输出其最长长度。
\(n\leq 5\times10^5\)。
\(Solution\)
可以构成回文串,即要么所有字符都出现了偶数次,要么有一个出现了奇数次、其余都出现了偶数次。
转化为异或!把每个字符c(0~21)映射到1<<c上去。
令\(s[x]\)表示根节点到\(x\)路径上边权的异或和。那么路径\((u,v)\)满足条件当且仅当\(s[u]\ xor\ s[v]\)等于\(0\)或是某个二次幂。
而路径\((u,v)\)的答案是\(dep[u]+dep[v]-dep[LCA]*2\)。在LCA处计算,这样只需要对每个状态求它最大的\(dep\)。
而且更新时只有23种方式(对于\(s[v]\),可以从\(\max\{dep[s[v]]\}\)和\(\max\{dep[s[v]\
xor\ 2^i]\}\)更新)。
dsu on tree求每个子树的\(\max\{dep[s]\}\)就好了。
复杂度\(O(23n\log n)\)。
//608ms 79100KB
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define MAXIN 300000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=5e5+5,INF=0x3f3f3f3f;
int Enum,H[N],nxt[N],to[N],ch[N],s[N],f[(1<<22)+2],L[N],R[N],A[N],dep[N],sz[N],son[N],Ans[N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v,int c)
{
to[++Enum]=v, nxt[Enum]=H[u], ch[Enum]=c, H[u]=Enum;
}
void DFS1(int x)
{
static int Index=0;
A[L[x]=++Index]=x;
int mx=0; sz[x]=1;
for(int i=H[x],v; i; i=nxt[i])
dep[v=to[i]]=dep[x]+1, s[v]=s[x]^ch[i], DFS1(v), sz[x]+=sz[v], sz[v]>mx&&(mx=sz[v],son[x]=v);
R[x]=Index;
}
inline int Add(int s,int d,int delta)
{
int ans=f[s]+d-delta;
for(int i=0; i<22; ++i) ans=std::max(ans,f[s^(1<<i)]+d-delta);//d[u]+d[v]-d[LCA]*2
return ans;
}
void DFS2(int x,int keep)
{
int ans=0;
for(int i=H[x]; i; i=nxt[i]) if(to[i]!=son[x]) DFS2(to[i],0),ans=std::max(ans,Ans[to[i]]);
if(son[x]) DFS2(son[x],1),ans=std::max(ans,Ans[son[x]]);
ans=std::max(ans,Add(s[x],0,dep[x])), f[s[x]]=std::max(f[s[x]],dep[x]);
for(int i=H[x],v,delta=dep[x]<<1; i; i=nxt[i])
if((v=to[i])!=son[x])
{
for(int j=L[v]; j<=R[v]; ++j) ans=std::max(ans,Add(s[A[j]],dep[A[j]],delta));
for(int j=L[v]; j<=R[v]; ++j) f[s[A[j]]]=std::max(f[s[A[j]]],dep[A[j]]);
}
Ans[x]=ans;
if(!keep) for(int i=L[x]; i<=R[x]; ++i) f[s[A[i]]]=-INF;
}
int main()
{
int n=read();
for(int i=2,x,c; i<=n; ++i)
{
x=read(),c=gc(); while(!isalpha(c)) c=gc();
AE(x,i,1<<c-'a');
}
memset(f,-0x3f,sizeof f);//没有的值不能用0更新
DFS1(1), DFS2(1,1);
for(int i=1; i<=n; ++i) printf("%d ",Ans[i]);
return 0;
}
Codeforces.741D.Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree 思路)的更多相关文章
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)
codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...
- codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths
题目链接:Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths 第一次写\(dsu\ on\ tree\),来记录一下 \(dsu\ o ...
- Codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(dsu on tree)
感觉dsu on tree一定程度上还是与点分类似的.考虑求出跨过每个点的最长满足要求的路径,再对子树内取max即可. 重排后可以变成回文串相当于出现奇数次的字母不超过1个.考虑dsu on tree ...
- CF 741D. Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths [dsu on tree 类似点分治]
D. Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths CF741D 题意: 一棵有根树,边上有字母a~v,求每个子树中最长的边,满 ...
- [Codeforces741D]Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths——dsu on tree
题目链接: Codeforces741D 题目大意:给出一棵树,根为$1$,每条边有一个$a-v$的小写字母,求每个点子树中的一条最长的简单路径使得这条路径上的边上的字母重排后是一个回文串. 显然如果 ...
- CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths——dsu on tree
题目描述 一棵根为1 的树,每条边上有一个字符(a-v共22种). 一条简单路径被称为Dokhtar-kosh当且仅当路径上的字符经过重新排序后可以变成一个回文串. 求每个子树中最长的Dokhtar- ...
- CF741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths (dsu on tree) 题解
先说一下dsu算法. 例题:子树众数问题. 给出一棵树,每个点有点权,求每个子树中出现次数最多的数的出现次数. 树的节点数为n,\(n \leq 500000\) 这个数据范围,\(O(n \sqrt ...
- dsu on tree (树上启发式合并) 详解
一直都没出过算法详解,昨天心血来潮想写一篇,于是 dsu on tree 它来了 1.前置技能 1.链式前向星(vector 建图) 2.dfs 建树 3.剖分轻重链,轻重儿子 重儿子 一个结点的所有 ...
- [探究] dsu on tree,一类树上离线问题的做法
dsu on tree. \(\rm 0x01\) 前言\(\&\)技术分析 \(\bold{dsu~on~tree}\),中文别称"树上启发式合并"(虽然我并不承认这种称 ...
随机推荐
- 推荐系统之协同过滤的原理及C++实现
1.引言 假如你经营着一家网店,里面卖各种商品(Items),有很多用户在你的店里面买过东西,并对买过的Items进行了评分,我们称之为历史信息,现在为了提高销售量,必须主动向用户推销产品,所以关键是 ...
- register 用法注意与深入--【sky原创】
register 用法注意与深入: gcc -o test test.c 这样编译的话会报错的,因为寄存器变量是不能取地址的,只有内存的变量才能取地址 寄存器变量取的是虚拟地址 #inc ...
- 【转】OpenCV对图片中的RotatedRect进行填充
函数名:full_rotated_rect 函数参数: image输入图像,rect希望在图像中填充的RotatedRect,color填充的颜色 主要的思路是:先找到RotatedRect的四个顶点 ...
- ThreadLocal和线程同步机制对比
共同点: ThreadLocal和线程同步机制都是为了解决多线程中相同变量的访问冲突问题. 区别: 在同步机制中,通过对象的锁机制保证同一时间只有一个线程访问变量. 这时该变量是多个线程共享的,使用同 ...
- HTML5事件—visibilitychange 页面可见性改变事件
转:https://blog.csdn.net/yusirxiaer/article/details/73480916 又看到一个很有意思的HTML5事件 visibilitychange事件是浏览器 ...
- C++ code:数值计算之矩形法求解积分问题
积分的通常方法是将区域切割成一个个的小矩形,然后求这些小矩形的和.小矩形切割得越细,计算精度就越高,可以将切割小矩形的数量作为循环迭代变量,将前后两个不同精度下的小矩形和之差,作为逼近是否达到要求的比 ...
- hdu4533 线段树维护分段函数
更新:x1,y1,x2,y2不用long long 会wa.. #include<iostream> #include<cstring> #include<cstdio& ...
- python接口自动化测试十九:函数
# 函数 a = [1, 3, 6, 4, 85, 32, 46]print(sum(a)) # sum,求和函数 def add(): a = 1, b = 2, return a + bprint ...
- 2018-2019 2 20165203 《网络对抗技术》Exp5 MSF基础
2018-2019 2 20165203 <网络对抗技术>Exp5 MSF基础 实验内容 本实践目标是掌握metasploit的基本应用方式,重点常用的三种攻击方式的思路.具体需要完成: ...
- LINQ学习之旅(五)
Union All/Union/Intersect操作和Top/Bottom操作和Paging操作和SqlMethods操作 Union All/Union/Intersect操作 适用场景:对两个集 ...