利用GBDT模型构造新特征具体方法

数据挖掘入门与实战  公众号: datadw

 

实际问题中,可直接用于机器学**模型的特征往往并不多。能否从“混乱”的原始log中挖掘到有用的特征,将会决定机器学**模型效果的好坏。引用下面一句流行的话:

特征决定了所有算法效果的上限,而不同的算法只是离这个上限的距离不同而已。

本文中我将介绍Facebook最近发表的利用GBDT模型构造新特征的方法。

(Xinran He et al. Practical Lessons from Predicting Clicks on Ads at Facebook, 2014)

论文的思想很简单,就是先用已有特征训练GBDT模型,然后利用GBDT模型学**到的树来构造新特征,最后把这些新特征加入原有特征一起训练模型。构造的新特征向量是取值0/1的,向量的每个元素对应于GBDT模型中树的叶子结点。当一个样本点通过某棵树最终落在这棵树的一个叶子结点上,那么在新特征向量中这个叶子结点对应的元素值为1,而这棵树的其他叶子结点对应的元素值为0。新特征向量的长度等于GBDT模型里所有树包含的叶子结点数之和。

举例说明。下面的图中的两棵树是GBDT学**到的,第一棵树有3个叶子结点,而第二棵树有2个叶子节点。对于一个输入样本点x,如果它在第一棵树最后落在其中的第二个叶子结点,而在第二棵树里最后落在其中的第一个叶子结点。那么通过GBDT获得的新特征向量为[0, 1, 0, 1, 0],其中向量中的前三位对应第一棵树的3个叶子结点,后两位对应第二棵树的2个叶子结点。

那么,GBDT中需要多少棵树能达到效果最好呢?具体数字显然是依赖于你的应用以及你拥有的数据量。一般数据量较少时,树太多会导致过拟合。在作者的应用中,大概500棵左右效果就基本不改进了。另外,作者在建GBDT时也会对每棵树的叶子结点数做约束——不多于12个叶子结点。

下面是这种方法在我们世纪佳缘的一个概率预测问题上的实际效果。我们只使用了30棵树。第一个图是只使用原始特征的结果,第二个图是原始特征加GBDT新特征的结果。图中横坐标表示预测概率值,纵坐标表示真实概率值。所以预测的点越靠近y=xy=x这条参考线越好。显然,使用了GBDT构造的新特征后,模型的预测效果好不少。

 

已经有人利用这种方法赢得了Kaggle一个CTR预估比赛的冠军,这种方法的具体实现代码可见   https://github.com/guestwalk/kaggle-2014-criteo

利用GBDT模型构造新特征具体方法的更多相关文章

  1. 利用GBDT模型构造新特征

    [本文链接:http://www.cnblogs.com/breezedeus/p/4109480.html,转载请注明出处] 我的博客主营地迁至github,欢迎朋友们有空去看看:http://br ...

  2. GBDT基本理论及利用GBDT组合特征的具体方法(收集的资料)

    最近两天在学习GBDT,看了一些资料,了解到GBDT由很多回归树构成,每一棵新回归树都是建立在上一棵回归树的损失函数梯度降低的方向. 以下为自己的理解,以及收集到的觉着特别好的学习资料. 1.GBDT ...

  3. GBDT原理及利用GBDT构造新的特征-Python实现

    1. 背景 1.1 Gradient Boosting Gradient Boosting是一种Boosting的方法,它主要的思想是,每一次建立模型是在之前建立模型损失函数的梯度下降方向.损失函数是 ...

  4. Dual Path Networks(DPN)——一种结合了ResNet和DenseNet优势的新型卷积网络结构。深度残差网络通过残差旁支通路再利用特征,但残差通道不善于探索新特征。密集连接网络通过密集连接通路探索新特征,但有高冗余度。

    如何评价Dual Path Networks(DPN)? 论文链接:https://arxiv.org/pdf/1707.01629v1.pdf在ImagNet-1k数据集上,浅DPN超过了最好的Re ...

  5. Java线程新特征——Java并发库

    一.线程池   Sun在Java5中,对Java线程的类库做了大量的扩展,其中线程池就是Java5的新特征之一,除了线程池之外,还有很多多线程相关的内容,为多线程的编程带来了极大便利.为了编写高效稳定 ...

  6. 谷歌大规模机器学习:模型训练、特征工程和算法选择 (32PPT下载)

    本文转自:http://mp.weixin.qq.com/s/Xe3g2OSkE3BpIC2wdt5J-A 谷歌大规模机器学习:模型训练.特征工程和算法选择 (32PPT下载) 2017-01-26  ...

  7. 使用深度双向LSTM模型构造社区问答系统

    所看到的. 首先强调一下,这个结构也是一个解决对照两个句子类似性的通用RNN解决方式,不只能够使用在问答社区.凡是涉及到对照两个句子或者实体关系的场合全然能够套用这个模型来解决.这点希望读者注意. 首 ...

  8. Eviews 9.0新功能——估计方法(ARDL、面板自回归、门限回归)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 9.2 估计功能 eviews9.0下载链接: ...

  9. AI佳作解读系列(一)——深度学习模型训练痛点及解决方法

    1 模型训练基本步骤 进入了AI领域,学习了手写字识别等几个demo后,就会发现深度学习模型训练是十分关键和有挑战性的.选定了网络结构后,深度学习训练过程基本大同小异,一般分为如下几个步骤 定义算法公 ...

随机推荐

  1. 关于iphone消息推送把C#当服务器端来发送

    看了苹果消息推送文档,感觉推送很简单的,但是还是按个人习惯把这些简单知识记录下来,在需要时候再查看一下! 在开发之前,要准备以下的资料 1.证书(包括产生证书和调试证书) 2.证书密码 3.唯一标识( ...

  2. Server Tomcat v7.0 Server at localhost failed to start解决办法

    今晚搞了下tomcat,在调试的时候发现报了这样一个错误Server Tomcat v7.0 Server at localhost failed to start 首先,确认了端口号8080是不是被 ...

  3. 【Django】Apache上运行多个Django项目

    运行单个项目的步骤参考:这里 1 安装环境 操作系统:Ubuntu 12.04 LTS 32 位(安装在VMware虚拟机中) python 版本: Python 2.7.3 Django版本 > ...

  4. Factory Girl使用

    1.使用Rspec,详见http://www.cnblogs.com/fanxiaopeng/p/3563772.html 2.在gemfile中添加 #Gemfile group :developm ...

  5. aliyun install php apache mysql nginx

    yum install httpd -y yum install mysql mysql-server -y yum install php-mysql php-pgsql php-pecl-mong ...

  6. Go安装

    http://www.linuxidc.com/Linux/2015-02/113159.htm https://github.com/astaxie/beego http://www.sizeofv ...

  7. .net(C#)操作文件的几种方法汇总

    .net(C#)操作文件的几种方法汇总 System.IO命名空间下类的用法:在System.IO名称空间中包含了用于文件输入输出的主要类.File:实用类,提供许多静态方法,用于移动.复制和删除文件 ...

  8. Centos 安装 p7zip,即Linux下的7z

    Centos 无法直接通过yum安装7z,我们一般通过repoforge,rpmforge的软件包进行安装,你只需要下载一个对应的包,直接安装就可以 p7zip-9.20.1-1.el4.rf.i38 ...

  9. UIImageView swift

    // // ViewController.swift // UILabelTest // // Created by mac on 15/6/23. // Copyright (c) 2015年 fa ...

  10. P1697: [Usaco2007 Feb]Cow Sorting牛排序

    这是一道置换群的裸题=-=,先拿来试试手对着打,以后应该会更加熟练吧! ; var n,i,j,maxx,minx,now,len,cursum,tmin,sum:longint; p:array[. ...