1 介绍

  从我开始学习Python时我就决定维护一个经常使用的“窍门”列表。不论何时当我看到一段让我觉得“酷,这样也行!”的代码时(在一个例子中、在StackOverflow、在开源码软件中,等等),我会尝试它直到理解它,然后把它添加到列表中。这篇文章是清理过列表的一部分。如果你是一个有经验的Python程序员,尽管你可能已经知道一些,但你仍能发现一些你不知道的。如果你是一个正在学习Python的C、C++或Java程序员,或者刚开始学习编程,那么你会像我一样发现它们中的很多非常有用。

  每个窍门或语言特性只能通过实例来验证,无需过多解释。虽然我已尽力使例子清晰,但它们中的一些仍会看起来有些复杂,这取决于你的熟悉程度。所以如果看过例子后还不清楚的话,标题能够提供足够的信息让你通过Google获取详细的内容。

  列表按难度排序,常用的语言特征和技巧放在前面。

  1.1   分拆

>>> a, b, c = 1, 2, 3
>>> a, b, c
(1, 2, 3)
>>> a, b, c = [1, 2, 3]
>>> a, b, c
(1, 2, 3)
>>> a, b, c = (2 * i + 1 for i in range(3))
>>> a, b, c
(1, 3, 5)
>>> a, (b, c), d = [1, (2, 3), 4]
>>> a
1
>>> b
2
>>> c
3
>>> d
4

  1.2   交换变量分拆

>>> a, b = 1, 2
>>> a, b = b, a
>>> a, b
(2, 1)

  1.3   拓展分拆 (Python 3下适用)

>>> a, *b, c = [1, 2, 3, 4, 5]
>>> a
1
>>> b
[2, 3, 4]
>>> c
5

  1.4   负索引

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-1]
10
>>> a[-3]
8

  1.5   列表切片 (a[start:end])

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[2:8]
[2, 3, 4, 5, 6, 7]

  1.6   使用负索引的列表切片

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[-4:-2]
[7, 8]

  1.7   带步进值的列表切片 (a[start:end:step])

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::2]
[0, 2, 4, 6, 8, 10]
>>> a[::3]
[0, 3, 6, 9]
>>> a[2:8:2]
[2, 4, 6]

  1.8   负步进值得列表切片

>>> a = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> a[::-1]
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> a[::-2]
[10, 8, 6, 4, 2, 0]

  1.9   列表切片赋值

>>> a = [1, 2, 3, 4, 5]
>>> a[2:3] = [0, 0]
>>> a
[1, 2, 0, 0, 4, 5]
>>> a[1:1] = [8, 9]
>>> a
[1, 8, 9, 2, 0, 0, 4, 5]
>>> a[1:-1] = []
>>> a
[1, 5]

  1.10   命名切片 (slice(start, end, step))

>>> a = [0, 1, 2, 3, 4, 5]
>>> LASTTHREE = slice(-3, None)
>>> LASTTHREE
slice(-3, None, None)
>>> a[LASTTHREE]
[3, 4, 5]

  1.11   zip打包解包列表和倍数

>>> a = [1, 2, 3]
>>> b = ['a', 'b', 'c']
>>> z = zip(a, b)
>>> z
[(1, 'a'), (2, 'b'), (3, 'c')]
>>> zip(*z)
[(1, 2, 3), ('a', 'b', 'c')]

  1.12   使用zip合并相邻的列表项

>>> a = [1, 2, 3, 4, 5, 6]
>>> zip(*([iter(a)] * 2))
[(1, 2), (3, 4), (5, 6)] >>> group_adjacent = lambda a, k: zip(*([iter(a)] * k))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)] >>> zip(a[::2], a[1::2])
[(1, 2), (3, 4), (5, 6)] >>> zip(a[::3], a[1::3], a[2::3])
[(1, 2, 3), (4, 5, 6)] >>> group_adjacent = lambda a, k: zip(*(a[i::k] for i in range(k)))
>>> group_adjacent(a, 3)
[(1, 2, 3), (4, 5, 6)]
>>> group_adjacent(a, 2)
[(1, 2), (3, 4), (5, 6)]
>>> group_adjacent(a, 1)
[(1,), (2,), (3,), (4,), (5,), (6,)]

  1.13  使用zip和iterators生成滑动窗口 (n -grams)

>>> from itertools import islice
>>> def n_grams(a, n):
... z = (islice(a, i, None) for i in range(n))
... return zip(*z)
...
>>> a = [1, 2, 3, 4, 5, 6]
>>> n_grams(a, 3)
[(1, 2, 3), (2, 3, 4), (3, 4, 5), (4, 5, 6)]
>>> n_grams(a, 2)
[(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)]
>>> n_grams(a, 4)
[(1, 2, 3, 4), (2, 3, 4, 5), (3, 4, 5, 6)]

  1.14   使用zip反转字典

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> m.items()
[('a', 1), ('c', 3), ('b', 2), ('d', 4)]
>>> zip(m.values(), m.keys())
[(1, 'a'), (3, 'c'), (2, 'b'), (4, 'd')]
>>> mi = dict(zip(m.values(), m.keys()))
>>> mi
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

  1.15   摊平列表:

>>> a = [[1, 2], [3, 4], [5, 6]]
>>> list(itertools.chain.from_iterable(a))
[1, 2, 3, 4, 5, 6] >>> sum(a, [])
[1, 2, 3, 4, 5, 6] >>> [x for l in a for x in l]
[1, 2, 3, 4, 5, 6] >>> a = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
>>> [x for l1 in a for l2 in l1 for x in l2]
[1, 2, 3, 4, 5, 6, 7, 8] >>> a = [1, 2, [3, 4], [[5, 6], [7, 8]]]
>>> flatten = lambda x: [y for l in x for y in flatten(l)] if type(x) is list else [x]
>>> flatten(a)
[1, 2, 3, 4, 5, 6, 7, 8] 注意: 根据Python的文档,itertools.chain.from_iterable是首选。

  1.16   生成器表达式

>>> g = (x ** 2 for x in xrange(10))
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> sum(x ** 3 for x in xrange(10))
2025
>>> sum(x ** 3 for x in xrange(10) if x % 3 == 1)
408

  1.17   迭代字典

>>> m = {x: x ** 2 for x in range(5)}
>>> m
{0: 0, 1: 1, 2: 4, 3: 9, 4: 16} >>> m = {x: 'A' + str(x) for x in range(10)}
>>> m
{0: 'A0', 1: 'A1', 2: 'A2', 3: 'A3', 4: 'A4', 5: 'A5', 6: 'A6', 7: 'A7', 8: 'A8', 9: 'A9'}

  1.18   通过迭代字典反转字典

>>> m = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
>>> m
{'d': 4, 'a': 1, 'b': 2, 'c': 3}
>>> {v: k for k, v in m.items()}
{1: 'a', 2: 'b', 3: 'c', 4: 'd'}

  1.19   命名序列 (collections.namedtuple)

>>> Point = collections.namedtuple('Point', ['x', 'y'])
>>> p = Point(x=1.0, y=2.0)
>>> p
Point(x=1.0, y=2.0)
>>> p.x
1.0
>>> p.y
2.0

  1.20   命名列表的继承:

>>> class Point(collections.namedtuple('PointBase', ['x', 'y'])):
... __slots__ = ()
... def __add__(self, other):
... return Point(x=self.x + other.x, y=self.y + other.y)
...
>>> p = Point(x=1.0, y=2.0)
>>> q = Point(x=2.0, y=3.0)
>>> p + q
Point(x=3.0, y=5.0)

  1.21   集合及集合操作

>>> A = {1, 2, 3, 3}
>>> A
set([1, 2, 3])
>>> B = {3, 4, 5, 6, 7}
>>> B
set([3, 4, 5, 6, 7])
>>> A | B
set([1, 2, 3, 4, 5, 6, 7])
>>> A & B
set([3])
>>> A - B
set([1, 2])
>>> B - A
set([4, 5, 6, 7])
>>> A ^ B
set([1, 2, 4, 5, 6, 7])
>>> (A ^ B) == ((A - B) | (B - A))
True

  1.22   多重集及其操作 (collections.Counter)

>>> A = collections.Counter([1, 2, 2])
>>> B = collections.Counter([2, 2, 3])
>>> A
Counter({2: 2, 1: 1})
>>> B
Counter({2: 2, 3: 1})
>>> A | B
Counter({2: 2, 1: 1, 3: 1})
>>> A & B
Counter({2: 2})
>>> A + B
Counter({2: 4, 1: 1, 3: 1})
>>> A - B
Counter({1: 1})
>>> B - A
Counter({3: 1})

  1.23   迭代中最常见的元素 (collections.Counter)

>>> A = collections.Counter([1, 1, 2, 2, 3, 3, 3, 3, 4, 5, 6, 7])
>>> A
Counter({3: 4, 1: 2, 2: 2, 4: 1, 5: 1, 6: 1, 7: 1})
>>> A.most_common(1)
[(3, 4)]
>>> A.most_common(3)
[(3, 4), (1, 2), (2, 2)]

  1.24   双端队列 (collections.deque)

>>> Q = collections.deque()
>>> Q.append(1)
>>> Q.appendleft(2)
>>> Q.extend([3, 4])
>>> Q.extendleft([5, 6])
>>> Q
deque([6, 5, 2, 1, 3, 4])
>>> Q.pop()
4
>>> Q.popleft()
6
>>> Q
deque([5, 2, 1, 3])
>>> Q.rotate(3)
>>> Q
deque([2, 1, 3, 5])
>>> Q.rotate(-3)
>>> Q
deque([5, 2, 1, 3])

  1.25   有最大长度的双端队列 (collections.deque)

>>> last_three = collections.deque(maxlen=3)
>>> for i in xrange(10):
... last_three.append(i)
... print ', '.join(str(x) for x in last_three)
...
0
0, 1
0, 1, 2
1, 2, 3
2, 3, 4
3, 4, 5
4, 5, 6
5, 6, 7
6, 7, 8
7, 8, 9

  1.26   字典排序 (collections.OrderedDict)

>>> m = dict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
1, 0, 3, 2, 5, 4, 7, 6, 9, 8
>>> m = collections.OrderedDict((str(x), x) for x in range(10))
>>> print ', '.join(m.keys())
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
>>> m = collections.OrderedDict((str(x), x) for x in range(10, 0, -1))
>>> print ', '.join(m.keys())
10, 9, 8, 7, 6, 5, 4, 3, 2, 1

  1.27   缺省字典 (collections.defaultdict)

>>> m = dict()
>>> m['a']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'a'
>>>
>>> m = collections.defaultdict(int)
>>> m['a']
0
>>> m['b']
0
>>> m = collections.defaultdict(str)
>>> m['a']
''
>>> m['b'] += 'a'
>>> m['b']
'a'
>>> m = collections.defaultdict(lambda: '[default value]')
>>> m['a']
'[default value]'
>>> m['b']
'[default value]'

  1.28   用缺省字典表示简单的树

>>> import json
>>> tree = lambda: collections.defaultdict(tree)
>>> root = tree()
>>> root['menu']['id'] = 'file'
>>> root['menu']['value'] = 'File'
>>> root['menu']['menuitems']['new']['value'] = 'New'
>>> root['menu']['menuitems']['new']['onclick'] = 'new();'
>>> root['menu']['menuitems']['open']['value'] = 'Open'
>>> root['menu']['menuitems']['open']['onclick'] = 'open();'
>>> root['menu']['menuitems']['close']['value'] = 'Close'
>>> root['menu']['menuitems']['close']['onclick'] = 'close();'
>>> print json.dumps(root, sort_keys=True, indent=4, separators=(',', ': '))
{
"menu": {
"id": "file",
"menuitems": {
"close": {
"onclick": "close();",
"value": "Close"
},
"new": {
"onclick": "new();",
"value": "New"
},
"open": {
"onclick": "open();",
"value": "Open"
}
},
"value": "File"
}
} (到https://gist.github.com/hrldcpr/2012250查看详情)

  1.29   映射对象到唯一的序列数 (collections.defaultdict)

>>> import itertools, collections
>>> value_to_numeric_map = collections.defaultdict(itertools.count().next)
>>> value_to_numeric_map['a']
0
>>> value_to_numeric_map['b']
1
>>> value_to_numeric_map['c']
2
>>> value_to_numeric_map['a']
0
>>> value_to_numeric_map['b']
1

  1.30   最大最小元素 (heapq.nlargest和heapq.nsmallest)

>>> a = [random.randint(0, 100) for __ in xrange(100)]
>>> heapq.nsmallest(5, a)
[3, 3, 5, 6, 8]
>>> heapq.nlargest(5, a)
[100, 100, 99, 98, 98]

  1.31   笛卡尔乘积 (itertools.product)

>>> for p in itertools.product([1, 2, 3], [4, 5]):
(1, 4)
(1, 5)
(2, 4)
(2, 5)
(3, 4)
(3, 5)
>>> for p in itertools.product([0, 1], repeat=4):
... print ''.join(str(x) for x in p)
...
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

  1.32   组合的组合和置换 (itertools.combinations 和 itertools.combinations_with_replacement)

>>> for c in itertools.combinations([1, 2, 3, 4, 5], 3):
... print ''.join(str(x) for x in c)
...
123
124
125
134
135
145
234
235
245
345
>>> for c in itertools.combinations_with_replacement([1, 2, 3], 2):
... print ''.join(str(x) for x in c)
...
11
12
13
22
23
33

  1.33   排序 (itertools.permutations)

>>> for p in itertools.permutations([1, 2, 3, 4]):
... print ''.join(str(x) for x in p)
...
1234
1243
1324
1342
1423
1432
2134
2143
2314
2341
2413
2431
3124
3142
3214
3241
3412
3421
4123
4132
4213
4231
4312
4321

  1.34   链接的迭代 (itertools.chain)

>>> a = [1, 2, 3, 4]
>>> for p in itertools.chain(itertools.combinations(a, 2), itertools.combinations(a, 3)):
... print p
...
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
>>> for subset in itertools.chain.from_iterable(itertools.combinations(a, n) for n in range(len(a) + 1))
... print subset
...
()
(1,)
(2,)
(3,)
(4,)
(1, 2)
(1, 3)
(1, 4)
(2, 3)
(2, 4)
(3, 4)
(1, 2, 3)
(1, 2, 4)
(1, 3, 4)
(2, 3, 4)
(1, 2, 3, 4)

  1.35   按给定值分组行 (itertools.groupby)

>>> from operator import itemgetter
>>> import itertools
>>> with open('contactlenses.csv', 'r') as infile:
... data = [line.strip().split(',') for line in infile]
...
>>> data = data[1:]
>>> def print_data(rows):
... print '\n'.join('\t'.join('{: <16}'.format(s) for s in row) for row in rows)
... >>> print_data(data)
young myope no reduced none
young myope no normal soft
young myope yes reduced none
young myope yes normal hard
young hypermetrope no reduced none
young hypermetrope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard
pre-presbyopic myope no reduced none
pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none >>> data.sort(key=itemgetter(-1))
>>> for value, group in itertools.groupby(data, lambda r: r[-1]):
... print '-----------'
... print 'Group: ' + value
... print_data(group)
...
-----------
Group: hard
young myope yes normal hard
young hypermetrope yes normal hard
pre-presbyopic myope yes normal hard
presbyopic myope yes normal hard
-----------
Group: none
young myope no reduced none
young myope yes reduced none
young hypermetrope no reduced none
young hypermetrope yes reduced none
pre-presbyopic myope no reduced none
pre-presbyopic myope yes reduced none
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope yes reduced none
pre-presbyopic hypermetrope yes normal none
presbyopic myope no reduced none
presbyopic myope no normal none
presbyopic myope yes reduced none
presbyopic hypermetrope no reduced none
presbyopic hypermetrope yes reduced none
presbyopic hypermetrope yes normal none
-----------
Group: soft
young myope no normal soft
young hypermetrope no normal soft
pre-presbyopic myope no normal soft
pre-presbyopic hypermetrope no normal soft
presbyopic hypermetrope no normal soft

  原文地址:http://sahandsaba.com/thirty-python-language-features-and-tricks-you-may-not-know.html

你可能不知道的30个Python语言的特点技巧的更多相关文章

  1. 你可能不知道的 30 个 Python 语言的特点技巧

        列表按难度排序,常用的语言特征和技巧放在前面. 1.1   分拆 >>> a, b, c = 1, 2, 3>>> a, b, c(1, 2, 3)> ...

  2. 30 个 Python 语言的特点技巧

    1   介绍 从我开始学习Python时我就决定维护一个经常使用的“窍门”列表.不论何时当我看到一段让我觉得“酷,这样也行!”的代码时(在一个例子中.在StackOverflow.在开源码软件中,等等 ...

  3. 如何玩转Python? 一文总结30种Python的窍门和技巧

    Python作为2019年必备语言之一,展现了不可替代作用.对于所有的数据科学工作者,如何提高使用Python的效率,这里,总结了30种Python的最佳实践.技巧和窍门.希望这些可以帮助大家在202 ...

  4. 你可能不知道的java、python、JavaScript以及jquary循环语句的区别

    一.概述 java循环语句分为四种形式,分别是 while, do/while, for, foreach: python中循环语句有两种,while,for: JavaScript中循环语句有四种, ...

  5. 大部分人都不知道的8个python神操作

    01 print 打印带有颜色的信息 大家知道 Python 中的信息打印函数 Print,一般我们会使用它打印一些东西,作为一个简单调试. 但是你知道么,这个 Print 打印出来的字体颜色是可以设 ...

  6. Python之几个技巧特点

    今天偶然看到一篇文章<你可能不知道的30个Python语言的提点技巧>,虽然做python有几年了,但中间还是好多不知道或没想到,特在这里做下摘抄. 原文地址: http://soft.c ...

  7. 学写PEP,参与Python语言的设计

    如果你为Python写了一篇PEP,这篇PEP成功的被Python指导委员会接受了,那么以后你在吹牛皮的时候你就可以说我主导了Python语言某个特性的设计工作. -- 跬蟒 我就问你主导Python ...

  8. 关于Python你不得不知道的Python语言特点

    首先什么是语言?什么是编程? 准确来说是:定义计算机程序的语言,用来向计算机发送指令 个人理解:   语言:是一种交流的工具或者方式.比如我们的汉语普通话.各地的方言.外语中的英语.俄语.日语等.我们 ...

  9. [转]Python程序员必须知道的30条编程技巧

    30 tips & tricks for Python Programming 1  直接交换两个数字位置 x, y = 10, 20 print(x, y) x, y = y, x prin ...

随机推荐

  1. 【Tech】Cassandra安装和启动

    1.安装 jre,配置系统环境变量: 2.安装python,配置环境变量: 3.下载cassandra,http://cassandra.apache.org/download/: 4.解压,这里我没 ...

  2. php关于static关键字

    静态属性与方法可以在不实例化类的情况下调用,直接使用类名::方法名的方式进行调用.静态属性不允许对象使用->操作符调用.静态方法中,$this伪变量不允许使用.可以使用self,parent,s ...

  3. JSON 之 SuperObject(6): 方法

    SuperObject 的 JSON 对象中还可以包含 "方法", 这太有意思了; 其方法的格式是: procedure Method(const This, Params: IS ...

  4. 函数lock_rec_get_first_on_page

    lock结构体 详见 /*********************************************************************//** Gets the first ...

  5. ui/ue设计师应该了解的原型设计软件

    前段实践整理过一些原型设计用的软件,这里分享一下,喜欢对更多的PM战线的童鞋有所裨益.(因为交互原型工具Axure ui设计师都很常用了,文中就不专门介绍了) 首先分下类: •1.交互原型(产品能做什 ...

  6. 20160205.CCPP体系详解(0015天)

    程序片段(01):01.杨辉三角.c 内容概要:杨辉三角 #include <stdio.h> #include <stdlib.h> #define N 10 //01.杨辉 ...

  7. (转)Spark 算子系列文章

    http://lxw1234.com/archives/2015/07/363.htm Spark算子:RDD基本转换操作(1)–map.flagMap.distinct Spark算子:RDD创建操 ...

  8. (转)每天一个Linux命令(8): tar

    通过SSH访问服务器,难免会要用到压缩,解压缩,打包,解包等,这时候tar命令就是是必不可少的一个功能强大的工具.linux中最流行的tar是麻雀虽小,五脏俱全,功能强大. tar命令可以为linux ...

  9. Spring IOC 三种注入方式

    1.    接口注入 2.    setter注入 3.    构造器注入 对象与对象之间的关系可以简单的理解为对象之间的依赖关系:A类需要B类的一个实例来进行某些操作,比如在A类的方法中需要调用B类 ...

  10. Heritrix源码分析(十四) 如何让Heritrix不间断的抓取(转)

    欢迎加入Heritrix群(QQ):109148319,10447185 , Lucene/Solr群(QQ) :  118972724 本博客已迁移到本人独立博客: http://www.yun5u ...