本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

Problem Description
The recreation center of WHU ACM Team has indoor billiards, Ping Pang, chess and bridge, toxophily, deluxe ballrooms KTV rooms, fishing, climbing, and so on.
We all like toxophily.

Bob is hooked on toxophily recently. Assume that Bob is at point (0,0) and he wants to shoot the fruits on a nearby tree. He can adjust the angle to fix the trajectory. Unfortunately, he always fails at that. Can you help him?

Now given the object's coordinates, please calculate the angle between the arrow and x-axis at Bob's point. Assume that g=9.8N/m.

 
Input
The input consists of several test cases. The first line of input consists of an integer T, indicating the number of test cases. Each test case is on a separated line, and it consists three floating point numbers: x, y, v. x and y indicate the coordinate of the fruit. v is the arrow's exit speed.
Technical Specification

1. T ≤ 100.
2. 0 ≤ x, y, v ≤ 10000. 

 
Output
For each test case, output the smallest answer rounded to six fractional digits on a separated line.
Output "-1", if there's no possible answer.

Please use radian as unit.

Sample Input
3
0.222018 23.901887 121.909183
39.096669 110.210922 20.270030
138.355025 2028.716904 25.079551
 
Sample Output
1.561582
-1
-1
 
 
正解:三分
解题报告:
  居然是我写的第一道三分的题目,我好菜啊...
  根据高一物理知识,高度关于角度显然是一个单峰函数,那么我们可以通过三分来得到最高高度,如果最高高度都达不到y那么就是-1.(要用到一点高一的物理...)
  接着我们可以在我们取到最高高度的角度和0之间二分,得到最接近y的角度.
  总结起来就是一句话:二分用于有单调性的函数或者区间,三分用于单峰函数求最值
 
 
 //It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int inf = (<<);
const double pi = acos(-);
const double eps = 1e-;
const double g = 9.80;
double X,Y,V,L,ans; inline int getint()
{
int w=,q=; char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar(); if(c=='-') q=,c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar(); return q ? -w : w;
} inline double cal(double o){
double vx,vy; vx=V*cos(o); vy=V*sin(o);
double tim=X/vx; double H=vy*tim-g*tim*tim/2.0;
return H;
} inline void three_div(){
double l=,r=pi/2.0,mm,mid;
while(r-l>eps) {
mm=l+(r-l)/; mid=mm+(r-l)/;
if(cal(mm)>cal(mid)) r=mid;
else l=mm;
}
L=l;
} inline void work(){
int T=getint(); double l,r,mid;
while(T--) {
cin>>X>>Y>>V; three_div();
if(cal(L)<Y) { printf("-1\n"); continue; }
if(fabs(cal(L)-Y)<=eps) { printf("%.6lf\n",L); continue; }
l=; r=L;
while(r-l>eps) {
mid=(l+r)*0.5;
if(cal(mid)<Y) l=mid,ans=mid;
else r=mid;
}
printf("%.6lf\n",ans);
}
} int main()
{
work();
return ;
}

HDU2298 Toxophily的更多相关文章

  1. HDU-2298 Toxophily (三分法入门系列)

    题意: 意大利炮射出炮弹的速度为v,求在(0,0)击中(x,y)处的目标,发射炮弹的角度. 题解: 设f(α)表示角度为α时, f(α) = vsin(α) * t - 4.9 * t * t   ① ...

  2. HDU 2298 Toxophily

    题目: Description The recreation center of WHU ACM Team has indoor billiards, Ping Pang, chess and bri ...

  3. Toxophily

    Problem Description The recreation center of WHU ACM Team has indoor billiards, Ping Pang, chess and ...

  4. HDU 2298 Toxophily(公式/三分+二分)

    Toxophily Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total ...

  5. 推公式hdu2298

    (0,0)点到(x,y)以v射箭 问 最小的角度 不能射到 -1 x=v*cos(a)*t; y=v*sin(a)*t-0.5*g*t*t; 消去t; y=x*tan(a)-0.5*g*x*x/(v* ...

  6. HDU 2298 Toxophily 【二分+三分】

    一个人站在(0,0)处射箭,箭的速度为v,问是否能够射到(x,y)处,并求最小角度. 首先需要判断在满足X=x的情况下最大高度hmax是否能够达到y,根据物理公式可得 h=vy*t-0.5*g*t*t ...

  7. HDU -2298 Toxophily(三分法)

    这道题目,可以推出物理公式直接来做,但是如果推不出来就必须用程序的一种算法来实现了,物理公式只是适合这一个或者某个题,但是这种下面这种解决问题的方法确实解决了一类问题 ----三分法,大家可能都听说过 ...

  8. 【三分+精度问题】G. Toxophily

    https://www.bnuoj.com/v3/contest_show.php?cid=9154#problem/G [题意] 已知人的坐标在(0,0),靶的位置在(x,y),人以速度v射箭并且射 ...

  9. HDU 2298:Toxophily(推公式)

    http://acm.hdu.edu.cn/showproblem.php?pid=2298 题意:给出一个x,y,v,问从(0,0)以v为初速度射箭,能否射到(x,y)这个点,如果能,输出最小的射出 ...

随机推荐

  1. 跟我学习Storm_Storm简介

    Storm是由专业数据分析公司BackType开发的一个分布式实时数据处理软件,可以简单.高效.可靠地处理大量的数据流.Twitter在2011年7月收购该公司,并于2011年9月底正式将Storm项 ...

  2. [MetaHook] Event Hook

    #include <metahook.h> struct event_hook_t { event_hook_t *next; char *name; void (*pfnEvent)(e ...

  3. Install Visual Studio For Mac Preview

    在Hack News上看到Visual Studio For Mac Preview的链接,上面有许多评论,纪录下尝鲜安装过程. 第一次尝试 VisualStudioforMacPreviewInst ...

  4. Beta版本项目展示要求

    项目评审的定在1月5日上午9:00在新主楼D225进行. 在Beta阶段项目评审会上, 每个团队有12分钟展示时间,10分钟问答和机动时间,我们的展示也不需要PPT,大家把要展现的东西写成博客(可以有 ...

  5. 使用 data-* 属性来嵌入自定义数据

    1. HTML 实例 <ul> <li data-animal-type="bird">Owl</li> <li data-animal- ...

  6. Theano2.1.1-基础知识之准备工作

    来源:http://deeplearning.net/software/theano/tutorial/index.html#tutorial 这里介绍的是使用theano的一些基础知识,虽然thea ...

  7. ZeroClipboard / jquery.zclip.min.js跨浏览器复制插件使用中遇到的问题解决

    之前写过一个淘宝优惠券连接PC端转手机端连接的小工具,当时写到将转换好的url复制到剪切板这块时解决了IE和火狐,就是没办法搞定Chrome,知道可以通过flash搞定,但是觉得太麻烦没有仔细研究. ...

  8. Android Intent的几种用法全面总结

    Android Intent的几种用法全面总结 Intent, 用法 Intent应该算是Android中特有的东西.你可以在Intent中指定程序要执行的动作(比如:view,edit,dial), ...

  9. ASP.NET Web API 安全验证之摘要(Digest)认证

    在基本认证的方式中,主要的安全问题来自于用户信息的明文传输,而在摘要认证中,主要通过一些手段避免了此问题,大大增加了安全性. 1.客户端匿名的方式请求 (无认证) HTTP/ Unauthorized ...

  10. CSS 问题集锦

    [1]让DIV中的内容居中 1.文字垂直居中,关键代码:height:100px;line-height:100px(两个值要相等) <div style="margin:0 auto ...