http://www.lydsy.com/JudgeOnline/problem.php?id=2242 (题目链接)

题意

  给出y,z,p。求:1.yz mod p;2.xy=z(mod p);3.yx=z(mod p)。

Solution

  1.快速幂

  2.exgcd

  3.BSGS

细节

  数学题就是细节多,具体看代码。

代码

// bzoj2242
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; map<int,int> mp; LL power(LL a,LL b,LL c) {
LL res=1;
while (b) {
if (b&1) res=res*a%c;
b>>=1;a=a*a%c;
}
return res;
}
void exgcd(LL a,LL b,LL &d,LL &x,LL &y) {
if (b==0) {d=a;x=1;y=0;return;}
exgcd(b,a%b,d,y,x);
y-=a/b*x;
}
LL BSGS(LL a,LL b,LL p) { //求解a^x=b(mod p),p为素数,无解返回-1.
if (a%p==0 && b==0) return 1;
if (a%p==0) return -1;
mp.clear();mp[1]=0; //注意a^0=1
int m=ceil(sqrt(p)); //向上取整,避免漏解
LL inv=power(a,p-m-1,p),e=1; //inv为a^m的逆元,用费马小定理求
for (int i=1;i<m;i++) { //求e[i]数组
e=e*a%p;
if (!mp.count(e)) mp[e]=i;
}
for (int i=0;i<m;i++) { //枚举a^(im),a^(im+1),a^(im+2)~~~
if (mp.count(b)) return mp[b]+i*m; //一定要是mp.count(),因为mp[b]可能为0
else b=b*inv%p;
}
return -1;
}
int main() {
LL T,K,Y,Z,P;scanf("%lld%lld",&T,&K);
while (T--) {
scanf("%lld%lld%lld",&Y,&Z,&P);
if (K==1) printf("%lld\n",power(Y,Z,P));
if (K==2) {
LL x,y,d;
exgcd(Y,P,d,x,y);
if (Z%d!=0) puts("Orz, I cannot find x!");
else printf("%lld\n",((Z/d)*x%(P/d)+(P/d))%(P/d));
}
if (K==3) {
LL ans=BSGS(Y,Z,P);
if (ans==-1) puts("Orz, I cannot find x!");
else printf("%lld\n",ans);
}
}
return 0;
}

  

  

【bzoj2242】 SDOI2011—计算器的更多相关文章

  1. [bzoj2242][Sdoi2011]计算器_exgcd_BSGS

    计算器 bzoj-2242 Sdoi-2011 题目大意:裸题,支持快速幂.扩展gcd.拔山盖世 注释:所有数据保证int,10组数据. 想法:裸题,就是注意一下exgcd别敲错... ... 最后, ...

  2. BZOJ2242 [SDOI2011]计算器 【BSGS】

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB Submit: 4741  Solved: 1796 [Submit][Sta ...

  3. BZOJ2242 [SDOI2011]计算器

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  4. BZOJ2242[SDOI2011]计算器——exgcd+BSGS

    题目描述 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给定y,z,p, ...

  5. bzoj2242: [SDOI2011]计算器 BSGS+exgcd

    你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值:(快速幂) 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数:(exgcd) 3.给 ...

  6. 【数学 BSGS】bzoj2242: [SDOI2011]计算器

    数论的板子集合…… Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最 ...

  7. [bzoj2242][SDOI2011][计算器] (Baby-Step-Giant-Step+快速幂+exgcd)

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  8. bzoj2242: [SDOI2011]计算器 && BSGS 算法

    BSGS算法 给定y.z.p,计算满足yx mod p=z的最小非负整数x.p为质数(没法写数学公式,以下内容用心去感受吧) 设 x = i*m + j. 则 y^(j)≡z∗y^(-i*m)) (m ...

  9. 2018.12.18 bzoj2242: [SDOI2011]计算器(数论)

    传送门 数论基础题. 对于第一种情况用快速幂,第二种用exgcdexgcdexgcd,第三种用bsgsbsgsbsgs 于是自己瞎yyyyyy了一个bsgsbsgsbsgs的板子(不知道是不是数据水了 ...

  10. bzoj千题计划246:bzoj2242: [SDOI2011]计算器

    http://www.lydsy.com/JudgeOnline/problem.php?id=2242 #include<map> #include<cmath> #incl ...

随机推荐

  1. Tomcat 开启 SSL

    生成keystore /usr/java/default/bin/keytool -genkey -alias tomcat -keyalg RSA -keystore ~/tomcat.keysto ...

  2. linux基本工具使用(二)

    1 查找某个目录下面一个所有的可执行文件,并且删除(对删除一个工程的可执行文件格外有用) find . -maxdepth 1 -file f -perm -111 | xargs rm

  3. Jenkins持续集成

    Jenkins持续集成 & .NET   最近受累于测试环境每次发布都很麻烦,而且我们有多个测试环境,因此专门抽时间做了Jenkins的配置和研究. 折腾了两天终于绿灯以后,先来个截图,Blu ...

  4. Generate Parentheses

    Generate Parentheses Given n pairs of parentheses, write a function to generate all combinations of ...

  5. 利用javascript对提交数据验证

    优点:提交前验证.在客户端进行. <html> <head> <script language="javascript"> function c ...

  6. 基于ASP.NET MVC的热插拔模块式开发框架(OrchardNoCMS)--AOP编程

    AOP编程在目前来说好像是大家都比较喜欢的.ASP.NET MVC中的Filter就是使用AOP实现的配置器模式.AOP在编码中的应用主要有如下几个方面: 日志记录,跟踪,优化和监控 事务的处理 持久 ...

  7. 分析cocos2d-x中的CrystalCraze示例游戏

    cocos2d-x自带了不少示例,以及几个比较简单的游戏,不过这些游戏都是用javascript binding(SpiderMonkey)做的,所以我猜测javascript binding可能是c ...

  8. Openwrt iptables分析

    这里将载有Openwrt的WR841N的路由表dump出来分析一下. 这个是dump出iptables的命令 root@OpenWrt:/etc/config# iptables-save 这里分为4 ...

  9. ASP.NET MVC3入门教程之参数(数据)传递

    本文转载自:http://www.youarebug.com/forum.php?mod=viewthread&tid=98&extra=page%3D1 MVC模式的参数(数据)传递 ...

  10. Koa框架实践与中间件原理剖析

     最近尝试用了一下Koa,并在此记录一下使用心得. 注意:本文是以读者已经了解Generator和Promise为前提在写的,因为单单Generator和Promise都能够写一篇博文来讲解介绍了,所 ...