题意:给出一堆数,问从这些数中取3个能组成三角形的概率?

sol:其实就是问从这些数里取3个组成三角形有多少种取法

脑洞大开的解法:用FFT

设一开始的数是1 3 3 4

作一个向量x,其中x[i]=边长为i的边的个数

那么就有x=[0 1 0 2 1 0 0 0 0]

令y=x,对x和y作DFT,得到dx和dy。令dn=dx*dy,再对dn作IDFT得到n

那么就得到n=[0 0 1 0 4 2 4 4 1 0 ]

其中n[i]=在x和y中各选一条边,使得两条边之和为i有几种方案

这时得到的n并不好,包含了各种重复的方案。还得减一下

最后得到的n=[0 0 0 0 2 1 1 2 0]

然后对n做奇怪的操作。。。

先求前缀和,得到S

对于a[i].  我们假设a[i]是形成的三角形中最长的。这样就是在其余中选择两个和>a[i],而且长度不能大于a[i]的。(注意这里所谓的大于小于,不是说长度的大于小于,其实是排好序以后的,位置关系,这样就可以不用管长度相等的情况,排在a[i]前的就是小于的,后面的就是大于的)。

根据前面求得的结果。
长度和大于a[i]的取两个的取法是sum[len]-sum[a[i]]. 但是这里面有不符合的。 一个是包含了取一大一小的
cnt -= (long long)(n--i)*i; 一个是包含了取一个本身i,然后取其它的
cnt -= (n-); 还有就是取两个都大于的了
cnt -= (long long)(n--i)*(n-i-)/;

Code:

 #include  <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <math.h>
using namespace std;
const double PI = acos(-1.0);
#define LL long long
#define MAXL 524230
#define MAXN 100010 //复数结构体
struct Complex
{
double x,y;//实部和虚部 x+yi
Complex(double _x = ,double _y = )
{
x = _x;
y = _y;
}
Complex operator -(const Complex &b)const
{
return Complex(x-b.x,y-b.y);
}
Complex operator +(const Complex &b)const
{
return Complex(x+b.x,y+b.y);
}
Complex operator *(const Complex &b)const
{
return Complex(x*b.x-y*b.y,x*b.y+y*b.x);
}
};
/*
*进行FFT和IFFT前的反转变换。
*位置i和(i二进制反转后位置)互换
* len必须去2的幂
*/
void change(Complex y[],int len)
{
int i,j,k;
for(i = , j = len/; i <len-; i++)
{
if(i < j)swap(y[i],y[j]);
//交换互为小标反转的元素,i<j保证交换一次
//i做正常的+1,j左反转类型的+1,始终保持i和j是反转的
k = len/;
while(j >= k)
{
j -= k;
k /= ;
}
if(j < k)j += k;
}
}
/*
*做FFT
* len必须为2^k形式,
* on==1时是DFT,on==-1时是IDFT
*/
//fft(x,len,1):对向量x做DFT(时域->频域),向量长度为1--len
//fft(x,len,-1):做IDFT(频域->时域)
void fft(Complex y[],int len,int on)
{
change(y,len);
for(int h = ; h <= len; h <<= )
{
Complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j = ; j < len; j+=h)
{
Complex w(,);
for(int k = j; k < j+h/; k++)
{
Complex u = y[k];
Complex t = w*y[k+h/];
y[k] = u+t;
y[k+h/] = u-t;
w = w*wn;
}
}
}
if(on == -)
for(int i = ; i < len; i++)
y[i].x /= len;
} Complex x[MAXL];
LL nx[MAXL],tri[MAXN],sx[MAXL],NUM[MAXL];
int TIMES,N,tm; int main()
{
scanf("%d",&TIMES);
for (int Times=;Times<=TIMES;Times++)
{
scanf("%d",&N); memset(nx,,sizeof(nx));
memset(sx,,sizeof(sx));
memset(x,,sizeof(x));
memset(NUM,,sizeof(NUM)); for (int i=;i<N;i++)
{
scanf("%d",&tri[i]);
NUM[tri[i]]++;
} sort(tri,tri+N);
int mx=tri[N-];
int l1=mx+;
int len=;
while (len<*l1) len<<=;
for (int i=;i<l1;i++)
x[i]=Complex(NUM[i],);
for (int i=l1;i<len;i++)
x[i]=Complex(,); fft(x,len,); for (int i=;i<len;i++)
x[i]=x[i]*x[i]; fft(x,len,-);
for (int i=;i<len;i++)
nx[i]=(LL)(x[i].x+0.5); len=*mx;
for (int i=;i<N;i++)
nx[tri[i]*]--;
for (int i=;i<=len;i++)
nx[i]=nx[i]/;
/*
for (int i=0;i<=len;i++)
cout<<nx[i]<<" ";
cout<<endl;
*/
sx[]=;
for (int i=;i<=len;i++)
sx[i]=sx[i-]+nx[i];
/*
for (int i=0;i<=len;i++)
cout<<sx[i]<<" ";
cout<<endl;
*/
LL tot=;
for (int i=;i<N;i++)
{
tot+=sx[len]-sx[tri[i]];
tot-=(LL)(N-i-)*i;
tot-=(N-);
tot-=(LL)(N--i)*(N-i-)/;
}
//cout<<tot<<endl;
LL kk=(LL)(N*(N-)*(N-)/);
//cout<<tot<<" "<<kk<<endl;
printf("%.7lf\n",(double)tot/kk);
} return ;
}

ref:http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html

hdu 4609 FFT的更多相关文章

  1. HDU 4609 FFT模板

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 题意:给你n个数,问任意取三边能够,构成三角形的概率为多少. 思路:使用FFT对所有长度的个数进行卷积(\ ...

  2. HDU 4609 FFT+组合数学

    3-idiots Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. HDU 4609 FFT+各种分类讨论

    思路: http://www.cnblogs.com/kuangbin/archive/2013/07/24/3210565.html 其实我是懒得写了.... 一定要define int long ...

  4. hdu 4609 3-idiots [fft 生成函数 计数]

    hdu 4609 3-idiots 题意: 给出\(A_i\),问随机选择一个三元子集,选择的数字构成三角形的三边长的概率. 一开始一直想直接做.... 先生成函数求选两个的方案(注意要减去两次选择同 ...

  5. hdu 4609 3-idiots

    http://acm.hdu.edu.cn/showproblem.php?pid=4609 FFT  不会 找了个模板 代码: #include <iostream> #include ...

  6. 快速傅里叶变换应用之二 hdu 4609 3-idiots

    快速傅里叶变化有不同的应用场景,hdu4609就比较有意思.题目要求是给n个线段,随机从中选取三个,组成三角形的概率. 初始实在没发现这个怎么和FFT联系起来,后来看了下别人的题解才突然想起来:组合计 ...

  7. hdu 5830 FFT + cdq分治

    Shell Necklace Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)T ...

  8. hdu 5885 FFT

    XM Reserves Time Limit: 10000/10000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Others)T ...

  9. HDU 1402 FFT 大数乘法

    $A * B$ FFT模板题,找到了一个看起来很清爽的模板 /** @Date : 2017-09-19 22:12:08 * @FileName: HDU 1402 FFT 大整数乘法.cpp * ...

随机推荐

  1. [转]IIS添加MIME扩展类型及常用的MIME类型列表

    http://www.cr173.com/html/18997_1.html 经常我在用IIS做为下载服务器的时候有时传上去的文件比如 xxx.iso 文件名名是传上去了,但是用http打开的时候确显 ...

  2. Orchard CRM 更新 - 同时支持 Microsoft Dynamics CRM 2011, 2013, 2015, 2016!

    本版本支持: 使用Orchard 1.8.1 系统 Dynamics CRM 2015 DLL .Net Framework 4.5.2 演示版本: http://www.orchardcrm.com ...

  3. 将函数传给webworker

    var zWorker = function (func,cb){ var node = document.createElement('script'),workerId='worker' + Da ...

  4. IE6 P标签下DIV无法inline-block

    IE6 P标签下的DIV标签无法inline-block,使其触发了hasLayout属性再用csshack 使其inline还是不行,始终要换行 解决:把div标签替换成非div标签,比如span等 ...

  5. Jboss EAP:native management API学习

    上一节已经学习了CLI命令行来控制JBOSS,如果想在程序中以编码方式来控制JBOSS,可以参考下面的代码,实际上在前面的文章,用代码控制Jboss上的DataSource,已经有所接触了,API与C ...

  6. hadoop 2.6伪分布安装

    hadoop 2.6的“伪”分式安装与“全”分式安装相比,大部分操作是相同的,主要区别在于不用配置slaves文件,而且其它xxx-core.xml里的参数很多也可以省略,下面是几个关键的配置: (安 ...

  7. WPF制作的小型笔记本-仿有道云笔记

    楼主所在的公司不允许下载外部资源, 不允许私自安装应用程序, 平时记录东西都是用记事本,时间久了很难找到以前记的东西. 平时在家都用有道笔记, 因此就模仿着做了一个, 先看下实际运行图片: 1. 初始 ...

  8. Java 的世界,我不懂:奇葩的 json 序列化

    先上张图,代表我心中的十万头草泥马: 写这么长的代码,头回见数组和单个实体共用同一个 json 节点的! 恐怕只有 java 社区的大牛B 才能做出这等事.. 由 Apache 发布: http:// ...

  9. web文档在线阅览

    之前遇到很多各种文档在线阅览的需求,也有不少朋友经常问我这种需求的实现方案,大致试了一下网上的一些比较主流的推荐方案,但都不尽如人意,这里有一个比较全面的总结,需要的朋友可以根据自己的需求到这里查看, ...

  10. (六)观察者模式详解(包含观察者模式JDK的漏洞以及事件驱动模型)

    作者:zuoxiaolong8810(左潇龙),转载请注明出处,特别说明:本博文来自博主原博客,为保证新博客中博文的完整性,特复制到此留存,如需转载请注明新博客地址即可. 本章我们讨论一个除前面的单例 ...