kmeans算法的python实现:

参考与样本来源《Machine Learning in Action》

 #-*-coding:UTF-8-*-
'''
Created on 2015年8月19日
@author: Ayumi Phoenix
'''
import numpy as np def distL2(a,b):
""" 计算两个向量之间的L2距离 """
return np.sqrt(np.sum((a-b)**2)) class Kmeans():
def __init__(self, dataset,k):
self.dataset = dataset
self.k = k
self.m, self.n = dataset.shape def randcent(self):
""" 根据输入数据集获得随机生成一组簇质心 """
maxn = np.max(self.dataset, 0) # 获取每一维的最大值
minn = np.min(self.dataset, 0) # 获取每一维的最小值
centoroid = np.random.rand(self.k,self.n) * (maxn - minn) + minn # k x n
return centoroid def train(self, dist, iter = 1):
"""
# 1. 计算每个样本与所有簇心的最近匹配距离数组 m x 1:
# 计算某样本与所有簇心的距离,
# 找到最小距离所属的下标序号 0...k-1
# 2. 根据当前类标的分配,重新计算平均聚类中心
# 按照当前分配索引样本数据
# 迭代次数减一
# 3. 返回最终的质心与分配的序号
"""
centoroid = self.randcent()
while iter:
labels = np.zeros((self.m,), int)
for i in range(self.m):
d = [dist(self.dataset[i,:],centoroid[j])
for j in range(self.k)]
labels[i] = np.argmin(d)
for i in range(self.k):
x = self.dataset[labels==i]
centoroid[i] = np.mean(x, 0)
iter -= 1
return centoroid, labels

读取数据与测试函数:

 ef loadDataSet(filename):
dataMat = []
with open(filename) as f:
for line in f.readlines():
curline = line.strip().split('\t')
fltline = map(np.float, curline)
dataMat.append(fltline)
return dataMat if __name__=="__main__":
pass
datMat = np.array(loadDataSet('testSet.txt'))
km = Kmeans(datMat,4)
centoroid, labels = km.train(distL2, iter=20) # 根据当前质心显示样本分布
import matplotlib.pylab as pl
pl.figure()
c = ['ro','go','bo','yo','co','ko','wo','mo']
for i in range(datMat.shape[0]):
pl.plot(datMat[i][0],datMat[i][1],c[labels[i]])
for cen in centoroid:
pl.plot(cen[0],cen[1],'mo')
pl.show()

结果:

python ML 笔记:Kmeans的更多相关文章

  1. Python机器学习笔记:K-Means算法,DBSCAN算法

    K-Means算法 K-Means 算法是无监督的聚类算法,它实现起来比较简单,聚类效果也不错,因此应用很广泛.K-Means 算法有大量的变体,本文就从最传统的K-Means算法学起,在其基础上学习 ...

  2. Python机器学习笔记:不得不了解的机器学习面试知识点(1)

    机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因 ...

  3. Python机器学习笔记:sklearn库的学习

    网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常 ...

  4. python机器学习笔记:EM算法

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域的基础,比如隐式马尔科夫算法(HMM),LDA主题模型的变分推断算法等等.本文对于E ...

  5. Python机器学习笔记:异常点检测算法——LOF(Local Outiler Factor)

    完整代码及其数据,请移步小编的GitHub 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/MachineLearningNote 在数据挖掘方面,经常需 ...

  6. Web Scraping with Python读书笔记及思考

    Web Scraping with Python读书笔记 标签(空格分隔): web scraping ,python 做数据抓取一定一定要明确:抓取\解析数据不是目的,目的是对数据的利用 一般的数据 ...

  7. python学习笔记整理——字典

    python学习笔记整理 数据结构--字典 无序的 {键:值} 对集合 用于查询的方法 len(d) Return the number of items in the dictionary d. 返 ...

  8. VS2013中Python学习笔记[Django Web的第一个网页]

    前言 前面我简单介绍了Python的Hello World.看到有人问我搞搞Python的Web,一时兴起,就来试试看. 第一篇 VS2013中Python学习笔记[环境搭建] 简单介绍Python环 ...

  9. python学习笔记之module && package

    个人总结: import module,module就是文件名,导入那个python文件 import package,package就是一个文件夹,导入的文件夹下有一个__init__.py的文件, ...

随机推荐

  1. 14.KVM安装之脚本和镜像目录树准备

    1.php脚本需要先安装PHP环境,Apache服务器必须支持PHP $ yum install -y php    #安装PHP $ php -v                      #查看是 ...

  2. CoreText原理及基本使用方法

    关于富文本的排版也是现在的一个技术点,以下是近日关于CoreText的学习记录以及个人理解,希望能对正在学习CoreText的朋友起到帮助. 1.框架坐标系 首先让我们先来看看CoreText坐标系和 ...

  3. zoj3430Detect the Virus(ac自动机)

    链接 解码之后是跟普通的自动机求解一下的,只不过解码比较恶心,512=>N>=0 ,所以不能用字符串来存,需要转换成整数来做. #include <iostream> #inc ...

  4. Linux IO实时监控iostat命令详解

    简介 iostat主要用于监控系统设备的IO负载情况,iostat首次运行时显示自系统启动开始的各项统计信息,之后运行iostat将显示自上次运行该命令以后的统计信息.用户可以通过指定统计的次数和时间 ...

  5. MySQL SQL

    SQL语句错误: Column count doesn't match value count at row 1 列计数与第1行的值计数不匹配 You have an error in your SQ ...

  6. NGUI Camera's raycast hit through the UI Layer issue

    Raycast into GUI?http://forum.unity3d.com/threads/raycast-into-gui.263397/ << ; Ray myray = UI ...

  7. Sprint2-3.0

    后续安排 第16周 周二晚7点之前将本代码上传到GITHUB. GITHUB地址:https://github.com/QueenIcey/teamwork/tree/master/eslife1 周 ...

  8. 模拟系列(一)——数字电路

    要求 简要模拟数字电路的运行过程,及电位(简化为L和H),用C# WinForm实现. 思路 逻辑部分 电路是一种图结构,基于C#的特性,设计Node类(结点)和Wire类(连线),且为泛型. 由于电 ...

  9. nginx rewrite 指令last break区别最详细的解释

    转自:http://blog.sina.com.cn/s/blog_4f9fc6e10102ux0w.html http://blog.cafeneko.info/2010/10/nginx_rewr ...

  10. PDF 补丁丁 0.4.2.1063 测试版发布:新增检查新版本功能

    新版本增加了检查新版本的功能(程序不自动联网,请手动检查). 补丁丁拥趸们,你们可以更方便地用上程序的最新测试版本啦! 新测试版还修复了旧测试版的一些问题,欢迎下载试用哦!