前文 的最后给出了玉伯的一道课后题,今天我们来讲讲这题的思路。

题目是这样的:

Number.MAX_VALUE + 1 == Number.MAX_VALUE;
Number.MAX_VALUE + 2 == Number.MAX_VALUE;
...
Number.MAX_VALUE + x == Number.MAX_VALUE;
Number.MAX_VALUE + x + 1 == Infinity;
...
Number.MAX_VALUE + Number.MAX_VALUE == Infinity;

// 问题:
// 1. x 的值是什么?
// 2. Infinity - Number.MAX_VALUE == x + 1; 是 true 还是 false ?

如果考虑浮点数的精度问题,那么 x 无解。推理很简单,根据 Number.MAX_VALUE + x == Number.MAX_VALUENumber.MAX_VALUE + x + 1 == Infinity 可以推得 Number.MAX_VALUE + 1 == Infinity ,显然这是不成立的,所以 x 无解。

但是显然玉伯这里不希望我们考虑精度损失问题。

我们先来看 Number.MAX_VALUE,在前面的文章中我们已经给出了它的值为:

1 * (Math.pow(2, 53) - 1) * Math.pow(2, 971) = 1.7976931348623157e+308

我们用二进制可以这样表示:

1 1 1 1 .. (53个1) .. 1 1 1   0 0 0 0 .. (971个0) .. 0 0 0 0

53 个 1 的 第一位是隐藏位(hidden bit),后 52 位即为 m(参照 前文 中对 m 的解释,e 同),而 971 个 0 即代表了指数 e(当然实际存储中 e 并不是这样表示的)。

接着我们把这个数加上 1,如果我们把这个数用二进制表示,可以表示为:

1 1 1 1 .. 53个1 .. 1 1 1   0 0 0 0 .. 970个0 .. 0 0 0 1

如果我们把该数用 IEEE 754 双精度浮点型表示出来,m 并不会有什么变化,因为 m 控制了这个数的精度,m 只能有 52 位,而加上的 1 对于这个大数字来说实在太微不足道!结果还是 Number.MAX_VALUE。

那么加上个什么数之后会引起质变呢?答案是 2 ^ 970,因为加上这个数之后,我们用二进制表示:

1 1 1 1 .. 53个1 .. 1 1 1   1 0 0 0 .. 970个0 .. 0 0 0 0

而该数用 IEEE 754 双精度浮点型表示时,由于 第 52 位 和 53 位同时为 1,所以会进位(Ties To Even),于是这个数变为了 Infinity。

那么 Number.MAX_VALUE + x == Number.MAX_VALUE 的解集似乎就呼之欲出了,x 的范围是 [0, 2 ^ 970),即[0, 2 ^ 970 - 1](如果考虑精度丢失的话,这个解集会是 [0, 2 ^ 970 - 2 ^ (970 - 53)])。

于是问题演变成 Number.MAX_VALUE + y == Infinity,而 y 的取值是 [1, 2 ^ 970],求 y。

前面已经说了当 y 为 2 ^ 970 时才会发生质变,所以可求得 x 为 2 ^ 970 - 1。如果把 Number.MAX_VALUE 用 0xfffffffffffff8000... 来表示的话,那么这个数可以用 0x0000000000003ffff... 来表示。

问题 2 就很简单了,因为 Infinity - Number.MAX_VALUE 还是等于 Infinity,而 x + 1 还是等于 x,显然不会达到 Infinity。

我们可以看下玉伯在评论区给出的答复:

Number.MAX_VALUE.toString(16) = ”
fffffffffffff800000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000000000000000000
00000000000000000000000″

前面有 13 个 f, 二进制就是 52 个 1
还有一个 8, 二进制是 1000
也就是说,前面 53 位都是 1

这样,当 Number.MAX_VALUE + 1 时,1 替代最后一个 0,但 IEEE 754 双精度浮点数的 m 最大为 53(含隐藏位),因此添加的 1 在存储时会被舍弃掉,所以:

Number.MAX_VALUE + 1 == Number.MAX_VALUE

同理类推,当 8(1000) 变成 b(1011),b 后面的位取最大值时,依旧有:

0xfffffffffffffbfffffffffffffffffffffffffffffffffffff
fffffffffffffffffffffffffffffffffffffffffffffffffffffff
fffffffffffffffffffffffffffffffffffffffffffffffffffffff
fffffffffffffffffffffffffffffffffffffffffffffffffffffff
ffffffffffffffffffffffffffffffffffffffff == Number.MAX_VALUE

进一步,当 再增 1, b 变成 c 时,将发生质变:

0xfffffffffffffc00000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000
000000000000000000000000000000000000 == Infinity

这是因为前面将有 54 个连续的 1, 在存储时,exponent 将由
971 变成 972, 超出了 IEEE 754 双精度浮点数存储格式中 e 的
最大值,因此质变为 Infinity 了。

这样,题目中 x 的值就很容易得到了:

x = 0xfffffffffffffbffff… – 0xfffffffffffff80000…
= 0x00000000000003ffff…

注意这个数在IEEE 754 双精度浮点数格式下无法精确存储。

还能得到两个有趣的结论:

1. Number.MAX_VALUE 不是一个数,而是一个区间 [0xfffffffffffff80000…, 0xfffffffffffffc0000…)
2. Infinity 指的是,所有大于等于 0xfffffffffffffc0000… 的数。

最后我们再总结几条有趣的规律:

  • Javascript 能精确保存的最大整数为 2 ^ 53,即为 9007199254740992,当 x 大于等于 9007199254740992时,x === x + 1。Javascript 能精确表示的整数的范围是 [- 2 ^ 53, 2 ^ 53]
  • Number.MAX_VALUE 不是一个数,而是一个区间 [0xfffffffffffff80000…, 0xfffffffffffffc0000…) 任何大于等于 9007199254740992 的数都是一个区间,没有丢失精度的数只是区间中的一个数。"我不是一个数,是一堆数⋯⋯"
  • Infinity 指的是,所有大于等于 0xfffffffffffffc0000… 的数

2015-12-25 update:

Javascript 能精确表示的数的范围是 (-2^53, 2^53),而不是文中所说的 [-2^53, 2^53]。这里能精确表示的意思是,只有一个数能对应该数。

为什么 2^53 不能精确表示? 2^53=9007199254740992,而在 Javascript 中 9007199254740993 也表示成 9007199254740992,所以如果在运算中出现 9007199254740992,是无法确定原数的(两种可能)。

我们可以用 Number.MIN_SAFE_INTEGERNumber.MAX_SAFE_INTEGER 来表示最小以及最大能精确表示的数,并能用 Number.isSafeInteger() 来检查一个数是否能精确表示。

玉伯的一道课后题题解(关于 IEEE 754 双精度浮点型精度损失)的更多相关文章

  1. 又一道简单题&&Ladygod(两道思维水题)

    Ladygod Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submit S ...

  2. POJ-1200 Crazy Search,人生第一道hash题!

                                                        Crazy Search 真是不容易啊,人生第一道hash题竟然是搜博客看题解来的. 题意:给你 ...

  3. Codeforces Round #524 (Div. 2)(前三题题解)

    这场比赛手速场+数学场,像我这样读题都读不大懂的蒟蒻表示呵呵呵. 第四题搞了半天,大概想出来了,但来不及(中途家里网炸了)查错,于是我交了两次丢了100分.幸亏这次没有掉rating. 比赛传送门:h ...

  4. Codeforces Round #519 by Botan Investments(前五题题解)

    开个新号打打codeforces(以前那号玩废了),结果就遇到了这么难一套.touristD题用了map,被卡掉了(其实是对cf的评测机过分自信),G题没过, 700多行代码,码力惊人.关键是这次to ...

  5. 2019山东ACM省赛L题题解(FLOYD传递闭包的变形)

    本题地址 https://cn.vjudge.net/contest/302014#problem/L Median Time Limit: 1 Second      Memory Limit: 6 ...

  6. Java程序设计(2021春)——第四章接口与多态课后题(选择题+编程题)答案与详解

    Java程序设计(2021春)--第四章接口与多态课后题(选择题+编程题)答案与详解 目录 Java程序设计(2021春)--第四章接口与多态课后题(选择题+编程题)答案与详解 第四章选择题 4.0 ...

  7. Sea.js创始人玉伯的前端开发之路

    在Web应用程序的用户体验越来越被重视的今天,前端开发的地位也上升到了前所未有的高度,而随之而来的也有更多的挑战. 为了将前端开发者繁重的工作变得简单,框架应运而生.国内也不乏一些非常优秀的前端开发框 ...

  8. 【开源专访】Sea.js创始人玉伯的前端开发之路

    摘要:玉伯,淘宝前端类库 KISSY.前端模块化开发框架SeaJS.前端基础类库Arale的创始人.本期[开源专访]我们邀请玉伯来为我们分享一些关于前端框架.前端开发的那些事,以及前端大牛是如何炼成的 ...

  9. 一道js题

    <script> var a = 5; function test(){ this.a = 10; a = 15 this.func = function(){ var a = 20 ; ...

随机推荐

  1. sql server使用中遇到的问题记录

    一.sql server 不能连接远程服务器,但可以连接本地的数据库 我目前用的是sql server 2012 sp1,用着用着突然就不能连接远程服务器上的数据库了,崩溃了一天... 修复试了,卸载 ...

  2. mysql-1

    接触mysql已经一年多了,但是平时很少用到,仅限于安装部署,最近在学习运维开发,需要用到数据库,于是买了一本mysql必知必会,给自己一个两个星期的时间,学完这本书, 写这一系列的博客,就是记录学习 ...

  3. Python标准库(1) — itertools模块

    简介 官方描述:Functional tools for creating and using iterators.即用于创建高效迭代器的函数. itertools.chain(*iterable) ...

  4. n枚硬币问题(找假币)

    问题描述: 在n枚外观相同的硬币中,有一枚是假币,并且已知假币与真币的重量不同,但不知道假币与真币相比较轻还是较重.可以通过一架天平来任意比较两组硬币,设计一个高效的算法来检测这枚假币. 解题思路: ...

  5. iOS tabbar 自定义小红点 消息显示,定制边框、颜色、高宽

    一般我们需要显示消息数,会利用到系统提供的api UIApplication.sharedApplication().applicationIconBadgeNumber = 10 但如果我们不想显示 ...

  6. 正则表达式(/[^0-9]/g,'')中的"/g"是什么意思?

    解答“正则表达式(/[^0-9]/g,'')中的"/g"是什么意思?”这个问题,也为了能够便于大家对正则表达式有一个更为综合和深刻的认识,我将一些关键点和容易犯糊涂的地方再系统总结 ...

  7. 实例浅析epoll的水平触发和边缘触发,以及边缘触发为什么要使用非阻塞IO

    一.基本概念                                                          我们通俗一点讲: Level_triggered(水平触发):当被监控的 ...

  8. 使用virt-manager创建和管理虚拟机

    1.虚拟机管理程序和虚拟机管理 一个服务器上只安装单一操作系统的时代已经过去,单个服务器可通过安装多个虚拟机来运行不同操作系统.虚拟机的大量使用减少了所需的服务其硬件,降低了服务器的功耗,但却带来了另 ...

  9. 通过三张图了解Redux中的重要概念

    上周利用业余的时间看了看Redux,刚开始有点不适应,一下在有了Action.Reducer.Store和Middleware这么多新的概念. 经过一些了解之后,发现Redux的单向数据里的模式还是比 ...

  10. 用FineReport报表系统构建资金监管平台

    一.应用背景 计算机的应用已经渗透到日常工作的许多方面,无论是其自身还是所发挥的作用,计算机都标志着一种高科技,使工作高效率和高水平.为了能更方便,更轻松,更好的管理,信息化建设正在日益发展壮大,更加 ...