LDA整体流程

先定义一些字母的含义:

  • 文档集合D,topic集合T
  • D中每个文档d看作一个单词序列< w1,w2,...,wn >,wi表示第i个单词,设d有n个单词。(LDA里面称之为word bag,实际上每个单词的出现位置对LDA算法无影响)
  • D中涉及的所有不同单词组成一个大集合VOCABULARY(简称VOC)

LDA以文档集合D作为输入(会有切词,去停用词,取词干等常见的预处理,略去不表),希望训练出的两个结果向量(设聚成k个Topic,VOC中共包含m个词):

  • 对每个D中的文档d,对应到不同topic的概率θd < pt1,..., ptk >,其中,pti表示d对应T中第i个topic的概率。计算方法是直观的,pti=nti/n,其中nti表示d中对应第i个topic的词的数目,n是d中所有词的总数。
  • 对每个T中的topic t,生成不同单词的概率φt < pw1,..., pwm >,其中,pwi表示t生成VOC中第i个单词的概率。计算方法同样很直观,pwi=Nwi/N,其中Nwi表示对应到topic t的VOC中第i个单词的数目,N表示所有对应到topic t的单词总数。

LDA的核心公式如下:

p(w|d) = p(w|t)*p(t|d)

直观的看这个公式,就是以Topic作为中间层,可以通过当前的θd和φt给出了文档d中出现单词w的概率。其中p(t|d)利用θd计算得到,p(w|t)利用φt计算得到。
实际上,利用当前的θd和φt,我们可以为一个文档中的一个单词计算它对应任意一个Topic时的p(w|d),然后根据这些结果来更新这个词应该对应的topic。然后,如果这个更新改变了这个单词所对应的Topic,就会反过来影响θd和φt。

LDA学习过程
LDA算法开始时,先随机地给θd和φt赋值(对所有的d和t)。然后上述过程不断重复,最终收敛到的结果就是LDA的输出。再详细说一下这个迭代的学习过程:
1)针对一个特定的文档ds中的第i单词wi,如果令该单词对应的topic为tj,可以把上述公式改写为:
pj(wi|ds) = p(wi|tj)*p(tj|ds)
先不管这个值怎么计算(可以先理解成直接从θds和φtj中取对应的项。实际没这么简单,但对理解整个LDA流程没什么影响,后文再说)。
2)现在我们可以枚举T中的topic,得到所有的pj(wi|ds),其中j取值1~k。然后可以根据这些概率值结果为ds中的第i个单词wi选择一个topic。最简单的想法是取令pj(wi|ds)最大的tj(注意,这个式子里只有j是变量),即
argmax[j]pj(wi|ds)
当然这只是一种方法(好像还不怎么常用),实际上这里怎么选择t在学术界有很多方法,我还没有好好去研究。
3)然后,如果ds中的第i个单词wi在这里选择了一个与原先不同的topic,就会对θd和φt有影响了(根据前面提到过的这两个向量的计算公式可以很容易知道)。它们的影响又会反过来影响对上面提到的p(w|d)的计算。对D中所有的d中的所有w进行一次p(w|d)的计算并重新选择topic看作一次迭代。这样进行n次循环迭代之后,就会收敛到LDA所需要的结果了。

LDA(主题模型算法)的更多相关文章

  1. [综] Latent Dirichlet Allocation(LDA)主题模型算法

    多项分布 http://szjc.math168.com/book/ebookdetail.aspx?cateid=1&&sectionid=983 二项分布和多项分布 http:// ...

  2. Spark:聚类算法之LDA主题模型算法

    http://blog.csdn.net/pipisorry/article/details/52912179 Spark上实现LDA原理 LDA主题模型算法 [主题模型TopicModel:隐含狄利 ...

  3. Spark机器学习(8):LDA主题模型算法

    1. LDA基础知识 LDA(Latent Dirichlet Allocation)是一种主题模型.LDA一个三层贝叶斯概率模型,包含词.主题和文档三层结构. LDA是一个生成模型,可以用来生成一篇 ...

  4. 用scikit-learn学习LDA主题模型

    在LDA模型原理篇我们总结了LDA主题模型的原理,这里我们就从应用的角度来使用scikit-learn来学习LDA主题模型.除了scikit-learn,  还有spark MLlib和gensim库 ...

  5. R语言︱LDA主题模型——最优主题数选取(topicmodels)+LDAvis可视化(lda+LDAvis)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:在自己学LDA主题模型时候,发现该模 ...

  6. 自然语言处理之LDA主题模型

    1.LDA概述 在机器学习领域,LDA是两个常用模型的简称:线性判别分析(Linear Discriminant Analysis)和 隐含狄利克雷分布(Latent Dirichlet Alloca ...

  7. 理解 LDA 主题模型

    前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 ...

  8. LDA主题模型三连击-入门/理论/代码

    目录 概况 为什么需要 LDA是什么 LDA的应用 gensim应用 数学原理 预备知识 抽取模型 样本生成 代码编写 本文将从三个方面介绍LDA主题模型--整体概况.数学推导.动手实现. 关于LDA ...

  9. 通俗理解LDA主题模型

    通俗理解LDA主题模型 0 前言 印象中,最開始听说"LDA"这个名词,是缘于rickjin在2013年3月写的一个LDA科普系列,叫LDA数学八卦,我当时一直想看来着,记得还打印 ...

  10. LDA主题模型(理解篇)

    何谓“主题”呢?望文生义就知道是什么意思了,就是诸如一篇文章.一段话.一个句子所表达的中心思想.不过从统计模型的角度来说, 我们是用一个特定的词频分布来刻画主题的,并认为一篇文章.一段话.一个句子是从 ...

随机推荐

  1. there is issue about change event of checkbox in the ie8 oe ie7

    some people said the change event of checkbox can not trigger in the ie7 or ie8,that's not true. thi ...

  2. CSS Hack技术介绍及常用的Hack技巧

    一.什么是CSS Hack? 不同的浏览器对CSS的解析结果是不同的,因此会导致相同的CSS输出的页面效果不同,这就需要CSS Hack来解决浏览器局部的兼容性问题.而这个针对不同的浏览器写不同的CS ...

  3. js 对象数组根据对象中的属性排序

    function createComparisonFunction(propertyName){ return function(object1,object2){ var value1 = obje ...

  4. Java--笔记(4)

    31.中间件是一种独立的系统软件或服务程序,分布式应用软件借助这种软件在不同的技术之间共享资源.中间件位于客户机/ 服务器的操作系统之上,管理计算机资源和网络通讯.是连接两个独立应用程序或独立系统的软 ...

  5. [转]java反射机制

    原文地址:http://www.cnblogs.com/jqyp/archive/2012/03/29/2423112.html 一.什么是反射机制         简单的来说,反射机制指的是程序在运 ...

  6. Kernel Methods - An conclusion

    Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...

  7. jsRender 循环for 和props

    jsrender提供多重循环方式 1.{{for array}}循环数组 2.{{props object}}循环对象 1.for array的使用 <body> <div id=& ...

  8. JPA学习笔记1——JPA基础

    1.JPA简介: Java持久化规范,是从EJB2.x以前的实体Bean(Entity bean)分离出来的,EJB3以后不再有实体bean,而是将实体bean放到JPA中实现.JPA是sun提出的一 ...

  9. 62.Android之各分辨率定义的图片规格

    转载:http://www.nljb.net/default/Android%E4%B9%8B%E5%90%84%E5%88%86%E8%BE%A8%E7%8E%87%E5%AE%9A%E4%B9%8 ...

  10. asp.net使用signalr实现集群集群下面的消息推送

    1.选用Signalr的原因 Signalr内部给我们做了很多封装.当服务器或者浏览器不支持websoket协议的时候就使用长连接方式  不支持长连接再选用轮询的方式获取消息 websoket:与服务 ...