POJ 1330 Nearest Common Ancestors(Targin求LCA)
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 26612 | Accepted: 13734 |
Description
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
Output
Sample Input
2 16 1 14 8 5 10 16 5 9 4 6 8 4 4 10 1 13 6 15 10 11 6 7 10 2 16 3 8 1 16 12 16 7 5 2 3 3 4 3 1 1 5 3 5
Sample Output
4 3
思路
最近公共祖先模板题
#include<iostream> #include<cstdio> #include<cstring> #include<vector> using namespace std; const int maxn = 10005; struct Edge{ int to,next; }edge[maxn]; vector<int>qry[maxn]; int N,tot,fa[maxn],head[maxn],indegree[maxn],ancestor[maxn]; bool vis[maxn]; void init() { tot = 0; for (int i = 1;i <= N;i++) fa[i] = i,head[i] = -1,indegree[i] = 0,vis[i] = false,qry[i].clear(); } void addedge(int u,int to) { edge[tot] = (Edge){to,head[u]}; head[u] = tot++; } int find(int x) { int r = x; while (r != fa[r]) r = fa[r]; int i = x,j; while (i != r) { j = fa[i]; fa[i] = r; i = j; } return r; } void Union(int x,int y) { x = find(x),y = find(y); if (x == y) return; fa[y] = x; //不能写成fa[x] = y,与集合合并的祖先有关系 } void targin_LCA(int u) { ancestor[u] = u; for (int i = head[u];i != -1;i = edge[i].next) { int v = edge[i].to; targin_LCA(v); Union(u,v); ancestor[find(u)] = u; } vis[u] = true; int size = qry[u].size(); for (int i = 0;i < size;i++) { if (vis[qry[u][i]]) printf("%d\n",ancestor[find(qry[u][i])]); return; } } int main() { int T; scanf("%d",&T); while (T--) { int u,v; scanf("%d",&N); init(); for (int i = 1;i < N;i++) { scanf("%d%d",&u,&v); addedge(u,v); indegree[v]++; } scanf("%d%d",&u,&v); qry[u].push_back(v),qry[v].push_back(u); for (int i = 1;i <= N;i++) { if (!indegree[i]) { targin_LCA(i); break; } } } return 0; }
#include<stdio.h> #include<string.h> #include<iostream> #include<algorithm> #include<math.h> #include<vector> using namespace std; const int MAXN=10010; int F[MAXN];//并查集 int r[MAXN];//并查集中集合的个数 bool vis[MAXN];//访问标记 int ancestor[MAXN];//祖先 struct Node { int to,next; }edge[MAXN*2]; int head[MAXN]; int tol; void addedge(int a,int b) { edge[tol].to=b; edge[tol].next=head[a]; head[a]=tol++; edge[tol].to=a; edge[tol].next=head[b]; head[b]=tol++; } struct Query { int q,next; int index;//查询编号 }query[MAXN*2];//查询数 int answer[MAXN*2];//查询结果 int cnt; int h[MAXN]; int tt; int Q;//查询个数 void add_query(int a,int b,int i) { query[tt].q=b; query[tt].next=h[a]; query[tt].index=i; h[a]=tt++; query[tt].q=a; query[tt].next=h[b]; query[tt].index=i; h[b]=tt++; } void init(int n) { for(int i=1;i<=n;i++) { F[i]=-1; r[i]=1; vis[i]=false; ancestor[i]=0; tol=0; tt=0; cnt=0;//已经查询到的个数 } memset(head,-1,sizeof(head)); memset(h,-1,sizeof(h)); } int find(int x) { if(F[x]==-1)return x; return F[x]=find(F[x]); } void Union(int x,int y)//合并 { int t1=find(x); int t2=find(y); if(t1!=t2) { if(r[t1]<=r[t2]) { F[t1]=t2; r[t2]+=r[t1]; } else { F[t2]=t1; r[t1]+=r[t2]; } } } void LCA(int u) { //if(cnt>=Q)return;//不要加这个 ancestor[u]=u; vis[u]=true;//这个一定要放在前面 for(int i=head[u];i!=-1;i=edge[i].next) { int v=edge[i].to; if(vis[v])continue; LCA(v); Union(u,v); ancestor[find(u)]=u; } for(int i=h[u];i!=-1;i=query[i].next) { int v=query[i].q; if(vis[v]) { answer[query[i].index]=ancestor[find(v)]; cnt++;//已经找到的答案数 } } } bool flag[MAXN]; int main() { //freopen("in.txt","r",stdin); //freopen("out.txt","w",stdout); int T; int N; int u,v; scanf("%d",&T); while(T--) { scanf("%d",&N); init(N); memset(flag,false,sizeof(flag)); for(int i=1;i<N;i++) { scanf("%d%d",&u,&v); flag[v]=true; addedge(u,v); } Q=1;//查询只有一组 scanf("%d%d",&u,&v); add_query(u,v,0);//增加一组查询 int root; for(int i=1;i<=N;i++) if(!flag[i]) { root=i; break; } LCA(root); for(int i=0;i<Q;i++)//输出所有答案 printf("%d\n",answer[i]); } return 0; }
POJ 1330 Nearest Common Ancestors(Targin求LCA)的更多相关文章
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- poj 1330 Nearest Common Ancestors 单次LCA/DFS
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19919 Accept ...
- POJ 1330 Nearest Common Ancestors(裸LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 39596 Accept ...
- POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)
Description A rooted tree is a well-known data structure in computer science and engineering. An exa ...
- poj 1330 Nearest Common Ancestors 裸的LCA
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ.1330 Nearest Common Ancestors (LCA 倍增)
POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...
- POJ 1330 Nearest Common Ancestors(lca)
POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- LCA POJ 1330 Nearest Common Ancestors
POJ 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 24209 ...
随机推荐
- CentOS7 下安装JDK1.7 和 Tomcat7
一.下载JDK 和 Tomcat安装包 1.JDK1.7 下载地址:http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downl ...
- c++返回值 注意事项
1.不要返回指向局部变量或临时对象的引用.函数执行完毕后,局部变量和临时对象会消失,引用将指向不存在的数据 2.返回指向const对象的引用 使用const引用的常见原因是旨在提高效率,但对于何时采用 ...
- PRML读书会第五章 Neural Networks(神经网络、BP误差后向传播链式求导法则、正则化、卷积网络)
主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内 ...
- 利用manifest文件对程序目录下的dll进行分类
1 背景 对于大部分的券商和机构投资者,只能通过有交易所交易系统接入资质的券商提供的柜台系统来进行现货交易.相对于期货市场,现货市场的柜台系统千差万别,接入协议有明文字符串.二进制数据和FIX协议等, ...
- learning to rank
Learning to Rank入门小结 + 漫谈 Learning to Rank入门小结 Table of Contents 1 前言 2 LTR流程 3 训练数据的获取4 特征抽取 3.1 人工 ...
- Android闹钟开发与展示Demo
前言: 看过了不少安卓闹钟开发的例子,都是点到为止,都不完整,这次整一个看看. 一.闹钟的设置不需要数据库,但是展示闹钟列表的时候需要,所以需要数据库: public class MySQLiteOp ...
- mvc的自带json序列化的datetime在js中的解析
默认仅序列化后的日期格式是这样的:'/Date(124565787989)/'(数字随便敲的,数字表示相对于1970年的总毫秒数) 在js中借助eval函数,eval函数的意义:将参数中的字符串当作j ...
- Linux(Ubuntu)下如何安装JDK
一.下载 首先,当然是要下载了. 按照需要选择不同的版本.笔者选择的是 jdk-7u45,如图: 二. 解压 将下载下来的 .tar.gz 文件解压. 使用如下命令解压: sudo tar zxvf ...
- [oracle] 解决ORA-30036:无法按8扩展段(在还原表空间‘XXXX’中)
select * from dba_data_files awhere a.TABLESPACE_NAME='UNDOTBS' alter tablespace UNDOTBS add datafil ...
- [转]响应式WEB设计学习(3)—如何改善移动设备网页的性能
原文地址:http://www.jb51.net/web/70362.html 前言 移动设备由于受到带宽.处理器运算速度的限制,因而对网页的性能有更高的要求.究竟是网页中的何种元素拉低了网页在移动设 ...