Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 26612   Accepted: 13734

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 

 In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is. 

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

思路

最近公共祖先模板题

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 10005;
struct Edge{
	int to,next;
}edge[maxn];
vector<int>qry[maxn];
int N,tot,fa[maxn],head[maxn],indegree[maxn],ancestor[maxn];
bool vis[maxn];

void init()
{
	tot = 0;
	for (int i = 1;i <= N;i++)	fa[i] = i,head[i] = -1,indegree[i] = 0,vis[i] = false,qry[i].clear();
}

void addedge(int u,int to)
{
	edge[tot] = (Edge){to,head[u]};
	head[u] = tot++;
}

int find(int x)
{
	int r = x;
	while (r != fa[r])	r = fa[r];
	int i = x,j;
	while (i != r)
	{
		j = fa[i];
		fa[i] = r;
		i = j;
	}
	return r;
}

void Union(int x,int y)
{
	x = find(x),y = find(y);
	if (x == y)	return;
	fa[y] = x;	//不能写成fa[x] = y,与集合合并的祖先有关系
}

void targin_LCA(int u)
{
	ancestor[u] = u;
	for (int i = head[u];i != -1;i = edge[i].next)
	{
		int v = edge[i].to;
		targin_LCA(v);
		Union(u,v);
		ancestor[find(u)] = u;
	}
	vis[u] = true;
	int size = qry[u].size();
	for (int i = 0;i < size;i++)
	{
		if (vis[qry[u][i]])	printf("%d\n",ancestor[find(qry[u][i])]);
		return;
	}
} 

int main()
{
	int T;
	scanf("%d",&T);
	while (T--)
	{
		int u,v;
		scanf("%d",&N);
		init();
		for (int i = 1;i < N;i++)
		{
			scanf("%d%d",&u,&v);
			addedge(u,v);
			indegree[v]++;
		}
		scanf("%d%d",&u,&v);
		qry[u].push_back(v),qry[v].push_back(u);
		for (int i = 1;i <= N;i++)
		{
			if (!indegree[i])
			{
				targin_LCA(i);
				break;
			}
		}
	}
	return 0;
}

  

#include<stdio.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<vector>
using namespace std;

const int MAXN=10010;

int F[MAXN];//并查集
int r[MAXN];//并查集中集合的个数
bool vis[MAXN];//访问标记
int ancestor[MAXN];//祖先
struct Node
{
    int to,next;
}edge[MAXN*2];

int head[MAXN];
int tol;
void addedge(int a,int b)
{
    edge[tol].to=b;
    edge[tol].next=head[a];
    head[a]=tol++;
    edge[tol].to=a;
    edge[tol].next=head[b];
    head[b]=tol++;
}

struct Query
{
    int q,next;
    int index;//查询编号
}query[MAXN*2];//查询数
int answer[MAXN*2];//查询结果
int cnt;
int h[MAXN];
int tt;
int Q;//查询个数

void add_query(int a,int b,int i)
{
    query[tt].q=b;
    query[tt].next=h[a];
    query[tt].index=i;
    h[a]=tt++;
    query[tt].q=a;
    query[tt].next=h[b];
    query[tt].index=i;
    h[b]=tt++;
}

void init(int n)
{
    for(int i=1;i<=n;i++)
    {
        F[i]=-1;
        r[i]=1;
        vis[i]=false;
        ancestor[i]=0;
        tol=0;
        tt=0;
        cnt=0;//已经查询到的个数
    }
    memset(head,-1,sizeof(head));
    memset(h,-1,sizeof(h));
}
int find(int x)
{
    if(F[x]==-1)return x;
    return F[x]=find(F[x]);
}

void Union(int x,int y)//合并
{
    int t1=find(x);
    int t2=find(y);
    if(t1!=t2)
    {
        if(r[t1]<=r[t2])
        {
            F[t1]=t2;
            r[t2]+=r[t1];
        }
        else
        {
            F[t2]=t1;
            r[t1]+=r[t2];
        }
    }
}

void LCA(int u)
{
    //if(cnt>=Q)return;//不要加这个
    ancestor[u]=u;
    vis[u]=true;//这个一定要放在前面
    for(int i=head[u];i!=-1;i=edge[i].next)
    {
        int v=edge[i].to;
        if(vis[v])continue;
        LCA(v);
        Union(u,v);
        ancestor[find(u)]=u;
    }
    for(int i=h[u];i!=-1;i=query[i].next)
    {
        int v=query[i].q;
        if(vis[v])
        {
            answer[query[i].index]=ancestor[find(v)];
            cnt++;//已经找到的答案数
        }
    }
}
bool flag[MAXN];
int main()
{
    //freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int T;
    int N;
    int u,v;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&N);
        init(N);
        memset(flag,false,sizeof(flag));
        for(int i=1;i<N;i++)
        {
            scanf("%d%d",&u,&v);
            flag[v]=true;
            addedge(u,v);
        }
        Q=1;//查询只有一组
        scanf("%d%d",&u,&v);
        add_query(u,v,0);//增加一组查询
        int root;
        for(int i=1;i<=N;i++)
          if(!flag[i])
          {
              root=i;
              break;
          }
        LCA(root);
        for(int i=0;i<Q;i++)//输出所有答案
          printf("%d\n",answer[i]);
    }
    return 0;
}

  

POJ 1330 Nearest Common Ancestors(Targin求LCA)的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(基础LCA)

    POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000KB   64bit IO Format: %l ...

  2. poj 1330 Nearest Common Ancestors 单次LCA/DFS

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19919   Accept ...

  3. POJ 1330 Nearest Common Ancestors(裸LCA)

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 39596   Accept ...

  4. POJ 1330 Nearest Common Ancestors(Tarjan离线LCA)

    Description A rooted tree is a well-known data structure in computer science and engineering. An exa ...

  5. poj 1330 Nearest Common Ancestors 裸的LCA

    #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #i ...

  6. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  7. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  8. POJ 1330 Nearest Common Ancestors(lca)

    POJ 1330 Nearest Common Ancestors A rooted tree is a well-known data structure in computer science a ...

  9. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

  10. LCA POJ 1330 Nearest Common Ancestors

    POJ 1330 Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 24209 ...

随机推荐

  1. HDU1281-棋盘游戏-二分图匹配

    先跑一个二分图匹配,然后一一删去匹配上的边,看能不能达到最大匹配数,不能这条边就是重要边 /*----------------------------------------------------- ...

  2. 在线音乐网站【04】Part two 功能实现

       上一篇博客里面已近总结了三个功能的具体实现,今天把剩余功能的具体实现补充总结,如果你想对整个小项目有清楚的了解,建议去看下前几篇博客. 1.在线音乐网站(1)需求和功能结构 2.在线音乐网站(2 ...

  3. Theano2.1.11-基础知识之稀疏

    来自:http://deeplearning.net/software/theano/tutorial/sparse.html sparse 通常来说,稀疏矩阵可以和常规矩阵一样提供相同的功能.两者不 ...

  4. Bootstrap系列 -- 41. 带表单的导航条

    有的导航条中会带有搜索表单,在Bootstrap框架中提供了一个“navbar-form”,使用方法很简单,在navbar容器中放置一个带有navbar-form类名的表单.navbar-left”让 ...

  5. Windows Phone 8 开发资料

    Design http://aka.ms/wp8devdesign Develop http://aka.ms/wp8devdoc Test http://aka.ms/wp8testing Publ ...

  6. Android之Activity启动模式

    正常模式 每个应用都有一个任务栈,任务栈中保存着已创建的Activity,先创建的Activity先入栈,栈顶是当前正在显示的activity(running),这是正常模式下的Activity的管理 ...

  7. hihocoder 1260

    之前做过的oj, acm题目忘了很多了, 又要开始要刷题了, go on! #1260 : String Problem I 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描 ...

  8. 【JQuery】jQuery.inArray 确定第一个参数在数组中的位置

    函数:jQuery.inArray(value,array,[fromIndex]) 解释:         value:用于在数组中查找是否存在         array:待处理数组.       ...

  9. 微信公众平台消息接口开发之微信浏览器HTTP_USER_AGENT判断

    在微信公众平台的开发过程中,我们有时需要开发网页并判断是否是是来自微信浏览器访问,本文介绍如何做出这一判断. 一.$_SERVER数组 $_SERVER 是一个包含了诸如头信息(header).路径( ...

  10. git创建仓库

    创建仓库 git init: Git 使用 git init 命令来初始化一个 Git 仓库,Git 的很多命令都需要在 Git 的仓库中运行,所以 git init 是使用 Git 的第一个命令. ...